Sul concetto di simmetria,
da Galileo alla teoria quantistica dei campi

Luciano Boi

1. Osservazioni introduttive; il principio di relativita da Galileo a Einstein

In questo testo parleremo brevemente anzitutto del pensiero di Galileo
Galilei in riferimento ad alcune sue idee e pitt in generale alla sua con-
cezione della fisica, della matematica e dei loro rapporti, idee e concet-
ti che peraltro variano in modo significativo nei suoi scritti; in seguito
parleremo piu diffusamente degli sviluppi successivi che questa con-
cezione ha avuto, in particolare nei secoli XIX e XX.

Per la maggior parte degli storici e filosofi della scienza', l'imma-
gine della natura costruita dalla nuova scienza dei secoli XVII e XVIII
presenta alcune caratteristiche essenziali, che possono essere enun-
ciate sinteticamente come segue: (i) la “rivoluzione scientifica” del 600
tento di smantellare le basi della fisica qualitativa, che si devono perlo-
pitt ad Aristotele ma che furono piu tardi riprese da autori come Duns
Scoto (1265-1308), Nicola Oresme (1325-1382) e Nicola Cusano (1401-
1464), e costrul un universo corpuscolare-meccanico; (ii) essa sostitui
all'apriorismo (cioé ai principi teorici e/o metafisici dati a priori), al
principio di autorita e al vacuo verbalismo scolastico la lettura diret-
ta, ovverosia l'osservazione e I'indagine delle cause dei fenomeni, del
“libro della natura’; (iii) essa affermo che I'esperimento doveva essere
fondato suipotesi teoriche e fattuali, sulla registrazione attenta dei fe-

1 Sivedano, ad esempio: PAOLO RosS1, La scienza e la filosofia dei moderni, Torino, Bol-
lati Boringhieri, 1989; PAoLO CASINI, La natura, Milano, Mondadori, 1979.
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nomeni e del loro ripetersi, la misurazione e il calcolo. Questi assunti,
nelle intenzioni dei maggiori scienziati del ‘600, servivano a liquidare
i pregiudizi e le categorie mentali che avevano sorretto per quindici
secoli la scienza peripatetica insegnata da Aristotele e dai suoi allievi.

Dopo Copernico e Keplero, Galileo ¢ quasi unanimemente consi-
derato uno degli artefici della rivoluzione della scienza moderna che,
secondo la maggior parte dei commentatori, avrebbe demolito la con-
cezione della natura e della conoscenza che si era imposta per circa
quindi secoli nelle accademie e nelle universita, e le cui fonti di ispi-
razione erano essenzialmente due, entrambe originatesi nell'antica
Grecia: quella platonica e quella aristotelica. La prima attribuiva agli
enti matematici, in particolare a quelli geometrici, una natura ideale,
cioe “esistenti” in un mondo di idee e proprieta perfette e incorrutti-
bili, ai quali gli oggetti fisici si conformavano solo in modo parziale
e approssimativo; e quella aristotelica, che sebbene riconoscesse alla
matematica un ruolo importante nella conoscenza della natura, sotto-
lineava il fatto che tra i concetti matematici e i fenomeni naturali non
esiste solo una relazione ideale o astratta, logico-deduttiva, ma una
reale interazione che puo avere una certa incidenza causale e pertanto
produrre effetti fisici. Un esempio importante di questa interazione &
la teoria elaborata da Aristotele, che studia i rapporti tra forma e so-
stanza e cerca di mostrare che la (o il tipo di) forma, dove per “forma” si
intende anche il bordo di un oggetto o di un corpo (oggi parliamo della
“forma globale” di una varieta o di uno spazio e distinguiamo gli spazi
che hanno un bordo da quelli che ne sono privi: ad esempio, il piano e
la sfera sono varieta bidimensionali senza bordo, mentre il disco con-
tiene un bordo e il cilindro due), puo influenzare le qualita e il compor-
tamento della sostanza — ossia di un determinato tipo di materia —, e,
reciprocamente, il tipo di materia — cioe il suo stato e le sue proprieta
— consente determinate variazioni della forma iniziale di un oggetto o
di un corpo. Diversi autori, moderni e contemporanei, hanno ripreso
la teoria di Aristotele migliorandola e riformulandola: basti pensare
alle idee di Leibniz sulle proprieta dinamiche dei corpi o a quelle di
Riemann sui rapporti tra le configurazioni geometriche degli oggetti e
le loro proprieta fisiche (per esempio nei fluidi).
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La parola “quasi” utilizzata all'inizio del precedente paragrafo sta a
indicare il fatto che alcuni storici e filosofi della scienza hanno critica-
to una tale ricostruzione ritenendola troppo semplicistica e per molti
aspetti infondata. Citiamo qui la ricostruzione storiografica accurata,
fatta a partire dalle fonti e dai testi originali, condotta da Lucio Rus-
so in particolare nella sua importante opera La rivoluzione dimenticata
(prima ed., 1996; nuova ed.: Feltrinelli, 2021). Russo critica in modo
sostanziale la ricostruzione storiografica, prevalente tra gli storici e i
filosofi della scienza, della nascita e dello sviluppo della scienza mo-
derna, che attribuisce essenzialmente a Galileo e Newton. Nella sua
meticolosa indagine Russo mostra che, in realta, le sue origini risal-
gono a piu di 2000 anni prima, cioé al periodo ellenistico e alle im-
portanti scoperte fatte tra il IV e II secolo a.C. da matematici e fisici
come Euclide, Archimede, Eratostene, Aristarco di Samo e tanti altri.
Fu grazie alle loro scoperte e teorie che nacque il metodo scientifico.
Il ruolo svolto dal loro pensiero scientifico, fondato spesso su concetti
filosofici e metafisici esposti con sorprendente rigore e immaginazio-
ne, in particolare nei campi della matematica, dell’astronomia e della
fisica, della biologia e della medicina, é stato essenziale non solo per
laffermazione della “civilta classica”, ma anche perché ha fornito le
basi teoriche e sperimentali a molti degli sviluppi successivi ad opera
degli scienziati e filosofi dei secoli XVI e XVII, in particolare grazie
alle scoperte di Copernico, Bruno, Keplero, Galileo, Descartes, Newton
e Leibniz.

Appoggiandosi su idee e risultati ottenuti da diversi autori nei se-
coli precedenti e in particolare sulla rivoluzione astronomica esposta
da Niccolo Copernico nel De revolutionibus orbium ccelestium (opera pub-
blicata in latino nel 1543), Galileo riusci a dare una alquanto tormen-
tata formulazione della legge matematica della caduta dei gravi, fece
alcune scoperte astronomiche, enuncio il “principio di relativita’, i
principi di inerzia e di scomposizione delle forze, e fu un convinto as-
sertore dell'importanza e della validita del sistema copernicano, tant’e
che molti dei suoi sforzi come scienziato furono rivolti a farne rico-
noscere il carattere di svolta radicale nella concezione dell'universo. Il
principio di relativita sara sviluppato nei secoli successivi e diventera
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uno dei principi fondamentali dellintera fisica grazie soprattutto alle
scoperte fatte da Einstein con la sua teoria della relativita ristretta del
1905.

11 principio di relativita lo troviamo enunciato in vari modi e anche
in vari contesti empirici ma prevalentemente mediante “esperienze di
pensiero” (Gedankenexperimente). Il principio di relativita galileiano affer-
ma che nessuna esperienza eseguita all'interno di un sistema di riferi-
mento puo rivelarne un moto traslatorio rettilineo uniforme, rispetto
a un riferimento fisso o, pitt genericamente, inerziale. In altri termini,
qualsiasi esperienza od osservazione eseguita all'interno di un corpo e
atta a rivelarne un motto rettilineo soltanto a patto che questo non sia
un moto traslatorio rettilineo uniforme. Nella formulazione galileiana
del principio, 'impossibilita appena espressa ¢ limitata alle esperienze
meccaniche.

Einstein affermera che tale impossibilita sussiste per esperienze
di qualsiasi natura, e tale asserzione costituisce, come vedremo piu
avanti, uno dei postulati fondamentali della teoria della relativita ri-
stretta (o speciale) del 1905. Nella relativita generale (1915-16), le due
fondamentali proprieta della materia che sono la gravitazione e l'iner-
zia venivano ad essere ricondotte da Einstein a uno stesso principio,
potendosi considerare ambedue come dovute alle proprieta geometri-
che della spazio-tempo o, fisicamente, alla distribuzione, variabile nel
tempo, della materia e dell’energia.

Nella relativita ristretta si parla di principio di equivalenza tra mas-
sa ed energia: considerando che le due “quantitd” fisiche si uguaglia-
no, Einstein ha fatto compiere alla fisica un profondo cambiamento
concettuale. Il principio di equivalenza di Einstein (relativita generale)
ci dice che, dal punto di vista della meccanica classica, un sistema di
riferimento situato in un campo gravitazionale e meccanicamente
equivalente a un sistema di riferimento uniformemente accelerato. Il
fatto che i due sistemi siano fisicamente equivalenti significa che tutti
i processi fisici si svolgono nei due sistemi seguendo le stesse leggi.
Alla base del principio di equivalenza c’é il fatto fondamentale che il
campo gravitazionale imprime localmente a tutti i corpi la stessa ac-
celerazione, data 'equivalenza tra massa inerziale e massa gravitazio-
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nale, e questo si spiega con il fatto che la massa inerziale e la massa
gravitazionale sono equivalenti.

Va comunque detto che gia alcuni teologi, filosofi e scienziati tardo
medievali o “pre-moderni”, come Duns Scoto, Nicola Oresme e Nicola
Cusano, studiarono quei fenomeni ed elaborarono idee e teorie di un
profondo acume concettuale, alle quali, va aggiunto, Galileo non fece
alcun preciso riferimento, anche se molto probabilmente egli era a co-
noscenza delle idee di Oresme poiché erano insegnate all'Universita di
Padova dove insegnava lo scienziato pisano. Il caso di Oresme, filosofo
della Scolastica e tra i pitt originali pensatori del XIV secolo, & partico-
larmente interessante. Egli fu autore di un “Trattato sulla configura-
zione delle qualita e del movimento” (Tractatus de configurationibus qua-
litatum et motuum, 1356) in cui espone il suo metodo per rappresentare
graficamente (tramite diagrammi) le variazioni di una grandezza, che
chiama qualita, in funzione di unaltra. In altre parole, egli introduce
il concetto matematico di relazione funzionale, cioe di funzione, tra due
variabili che variano una in funzione dell'altra; concetto che neanche
Galileo riuscira a formulare in maniera generale, e infatti bisognera
aspettare i lavori di Newton e Leibniz sull'analisi infinitesimale per
trovarne un enunciato preciso.

Oresme considera per esempio un corpo nel quale il calore non é
omogeneo, ma varia secondo il luogo e la misura. Per rappresentare
le variazioni del calore all'interno del corpo, egli immagina una retta
tracciata sul corpo. Chiama longitudino (che corrisponde al nostro asse
orizzontale delle ascisse) la distanza che separa un punto qualsiasi della
retta da un ‘punto origine’ fissato arbitrariamente. In ciascun punto di
questa retta egli traccia una perpendicolare la cui altezza, che chiama
latitudino (lequivalente del nostro asse verticale delle ordinate), € pro-
porzionale all'intensita del calore nel punto corrispondente del corpo.
Ottiene cosi una figura geometrica il cui studio non solo facilita I'ana-
lisi delle variazioni del calore, ma in piu ha il pregio di evidenziare il
fatto importante che i cambiamenti nel diagramma geometrico sono
tutt’'uno con le variazioni dello stato fisico del corpo materiale. Non ci
troviamo quindi di fronte a una mera rappresentazione grafica del va-
riare di due quantita messe in relazione tra di loro, ma a un diagram-
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ma intrinsecamente spaziale le cui variazioni riflettono cambiamenti
che avvengono nella qualita (nel caso specifico si tratta del calore) o
nelle qualita dei corpi.

La proprieta di questa qualita — scrive Oresme — saranno esaminate pitt
chiaramente e piu facilmente quando qualcosa che le ¢ simile e disegnato su
una figura piana, e questa cosa, resa chiara cioe visibile, viene colta rapida-
mente e perfettamente dall'immaginazione [...] perché 'immaginazione della
figura aiuta grandemente la conoscenza delle cose stesse.

Nel passo finale della citazione Oresme sottolinea un punto im-
portante, ossia I'importanza dellimmaginazione nel processo della
conoscenza, e pill precisamente ancora 'importanza delle immagini
mentali per penetrare nelle proprieta stesse delle cose (dei corpi). Co-
sicché le figure, i grafi o i diagrammi non sono un mero strumento uti-
le per descrivere le variazioni di quantita ma dei modelli atti a spiegare
i cambiamenti qualitativi dei corpi®. Egli intraprende poi, infatti, uno
studio matematico delle figure piane ottenute grazie alle rappresen-
tazioni grafiche della qualita. Fa loro subire delle trasformazioni geo-
metriche semplici cercandovi delle proprieta invarianti, il che lo porta
a una classificazione delle curve. Alcuni storici vedono in Oresme un
precursore di Cartesio poiché di fatto avrebbe posto le basi della ge-
ometria analitica. Il nostro autore non si ferma tuttavia a uno studio
completamente astratto, tanto é vero che applica la sua idea di configu-
razione allo studio di diversi fenomeni, in particolare in biologia: egli
afferma, per esempio, che il calore naturale di un leone si comporta
in modo diverso da quello di un asino o di un bue. E da la seguente
spiegazione: «Esso [il calore] gli fornisce una potenza pitt grande, non
solamente perché é piu intenso, ma anche perché la sua rappresenta-
zione grafica é diversa». Cosi, sembra esserci un nesso tra la proprieta
fisica e la variazione spaziale, nesso che contribuisce a produrre dei
cambiamenti qualitativi nei corpi.

2 Su questo ed altri aspetti del pensiero matematico di Oresme, cfr. le analisi inte-
ressanti di GILLES CHATELET, Les enjeux du mobile, Parigi, Editions du Seuil, 1993.
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La parte forse pit rilevante dellopera di Oresme é quella in cui l'au-
tore applica la sua “dottrina della configurazione” a uno studio delle
proprieta del movimento. Qui Oresme da tutta la misura del suo genio.
Si tratta della parte della sua opera che esercito un'influenza duratura
sui suoi contemporanei e che senza dubbio ha lasciato una traccia im-
portante nella storia della scienza del moto. Per descrivere e studiare
un movimento rettilineo, Oresme ha l'idea di rappresentare grafica-
mente la velocita istantanea del corpo mobile in funzione del tempo.
Su una retta orizzontale riporta una scala proporzionale al tempo, da
cui traccia delle perpendicolari la cui lunghezza ¢ proporzionale alla
velocita del mobile nellistante corrispondente. Egli s’interessa parti-
colarmente a esaminare la regione del piano in cui compaiono queste
perpendicolari successive. Grazie allo studio di casi particolari sem-
plici e la loro generalizzazione, Oresme giunge alla conclusione che
l'area della superficie interessata dalle diverse perpendicolari tracciate
a partire da ciascun punto della scala del tempo é proporzionale alla
distanza percorsa dal mobile durante 'intervallo di tempo. Questo po-
stulato ¢é alla base delle scoperte relative al moto uniformemente ac-
celerato. Attraverso un sottile ragionamento matematico e aiutandosi
con una altrettanto penetrante intuizione spaziale e rappresentazione
diagrammatica, Nicolas Oresme perviene a stabilire la legge fondamen-
tale del moto rettilineo uniformemente accelerato, vale a dire che, se la ve-
locita all'istante iniziale v_ & nulla, la distanza percorsa sara proporzionale al
quadrato del tempo t*.

Questa legge ebbe una notevole diffusione nel periodo trascorso tra
Oresme e Galileo e fu insegnata ad Oxford dal filosofo, logico e mate-
matico britannico William Heytesbury (1313-1372) e dai suoi discepo-
li. Una delle ragioni per cui abitualmente si attribuisce questa legge
a Galileo, é perché lo scienziato pisano ha avuto l'idea di utilizzare un
piano inclinato per verificare sperimentalmente quale legge si appli-
casse al moto di caduta dei corpi. Ma anche perché Galileo non fu par-
ticolarmente propenso a riconoscere il valore delle scoperte fatte dagli
scienziati che 'avevano preceduto. E il caso di Archimede per quanto
riguarda la matematica (proprieta delle spirali, definizione dell'area e
del volume della sfera, enunciato del problema della quadratura della
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parabola, in cui egli dimostra con vari metodi che l'area di un segmento di
parabola vale quattro terzi larea del triangolo avente la stessa base), la mecca-
nica razionale (il principio della leva), la meccanica dei fluidi (principio
di Archimede) e I'astronomia. E anche il caso di Keplero per quanto
riguarda le sue scoperte astronomiche sul moto planetario (Astronomia
nova, 1609), e di Giordano Bruno in relazione alle sue strabilianti idee
che ammettevano la natura infinita dell'universo e la possibile esisten-
za di un numero infinito di mondi (ovvero di galassie) all'interno di
esso (in De linfinito, universo e mondi, 1584). Va infine osservato che il
Trattato sulla configurazione delle qualita e del movimento € stato un mo-
mento importante dello sviluppo concettuale della scienza e della filo-
sofia della natura. La dottrina di Oresme fu diffusa in tutta Europa, tra
cui I'Ttalia. Tuttavia, non circolo l'opera originale, ma un compendio
intitolato Tractatus de latitudinibus formarum, nel quale mancavano al-
cuni metodi e ragionamenti importanti sviluppati da Oresme nel suo
Trattato originale. Alcune lacune furono colmate dal filosofo e mate-
matico parmigiano Biagio Pelacani (1355-1416), che insegno a Padova. I
suoi scritti ebbero larga diffusione in Italia, ed & probabile che Galileo
per suo tramite fosse a conoscenza delle scoperte di Oresme.

Sul piano filosofico, non senza una certa temerarieta, Galileo oppo-
se alle convinzioni dei ‘filosofi in libris’ la certezza che la vera filosofia
naturale era tutta da costruire, facendo domande singole e chiare alla
natura, costringendola a rispondere con precisione, generalizzando le
risposte sotto forma di leggi, confrontando di nuovo le leggi con l'e-
sperienza. Ipotesi teorico-fattuali e verifica matematica, induzione
e deduzione, analisi e sintesi, sono per Galileo momenti ed elementi
estremamente interconnessi del “buon” metodo scientifico, che tutta-
via non troviamo mai espressamente compendiati in enunciati precisi.

Nel Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernica-
no (1632), I'interlocutore copernicano Salviati critica Aristotele per aver
costruito la ‘fabbrica del mondo, ossia il cosmo geocentrico e geosta-
tico secondo i precetti di una ‘architettura’ arbitraria, ovvero la distin-
zione ontologica tra moti circolari e moti rettilinei, tra mondi incor-
ruttibili e perfetti e sfera sublunare. C’é¢ comunque da notare a questo
proposito che la concezione di Aristotele, che egli espone nelle sue due
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opere maggiori che trattano della “filosofia della natura”, la Fisica e la
Metafisica, € ben pit ricca e complessa e viene spiegata dall’autore con
argomenti fisici e formali spesso esposti in modo rigoroso.

Va anche precisato che i precetti d’architettura galileiana non deri-
vano da una fonte unica, ma da pit fonti antiche. Anzitutto la statica e
lidrostatica di Archimede, dal quale Galileo apprese a impostare quan-
titativamente, matematicamente il problema della caduta dei gravi e
del moto in generale; in secondo luogo la certezza che il mondo fisico
possedesse una determinata struttura geometrica e fosse conforme a
leggi matematiche precise, ch'egli amava esprimere in termini platoni-
ci; e ancora, dalla concezione corpuscolare della materia e della sensa-
zione, che risale a Democrito.

Quando nel 1609 Galileo volse il cannocchiale verso il cielo, fu un
evento memorabile nella storia del pensiero umano. E noto che cosa
“vide” e annuncio al mondo con la pubblicazione nel 1610 del breve
trattato di astronomia, Sidereus Nuncius. La Luna gli apparve “aspra e
ineguale, ripiena di protuberanze e di cavita simili ma assai maggiori
ai monti e alle valli della Terra”; su quei monti sorgeva e tramontava il
sole come sulla Terra. La Via Lattea si rivelava un enorme ammasso di
stelle lontanissime, i pianeti e le costellazioni apparivano pit distinti.

In quegli stessi anni in cui Galileo era intento a osservare le carat-
teristiche irregolari e imperfette della Luna e a mostrare I'esistenza
di satelliti orbitanti intorno al pianeta Giove, le cui traiettorie variano
geometricamente e la loro direzione é retrograda rispetto al senso di
rotazione di Giove, il matematico, astronomo, fisico e teologo tedesco
Johannes Kepler era dedito a scoprire le ragioni geometriche dell'ar-
monia del cosmo e a elaborare una teoria matematica capace di spie-
gare le leggi del moto e dunque la dinamica dei corpi celesti nell'Uni-
verso. Galileo e Keplero si scambiarono lettere di collaborazione e di
stima riguardo alle scoperte del Sidereus Nuncius, ma'uno non conobbe
o non apprezzo la scoperta kepleriana delle ellissi, né l'altro seppe uti-
lizzare i concetti essenziali della dinamica galileiana. Descartes, d’altra
parte, scorse con poca attenzione il Dialogo sui massimi sistemi... e non
dette molto credito al metodo sperimentale galileiano. Il filosofo e ma-
tematico ritrovo a sua volta insieme con il filosofo e scienziato Isaac
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Beeckman la legge del moto uniformemente accelerato e “geometriz-
z0” il concetto di inerzia allinterno di una concezione rigorosamente
euclidea dello spazio.

Un progresso decisivo fu ottenuto dal fisico e matematico britan-
nico Isaac Newton poco piu di cinquant’anni dopo le osservazioni e
scoperte importanti fatte da Galilei. A partire dal 1666, Newton riusci
ad unificare in una teoria coerente e armonica i diversi risultati di Ke-
plero sulle cause dei moti planetari e di Cartesio sul peso dei corpi sulla
Terra, dando alle leggi dinamiche elaborate dai suoi predecessori una
sistemazione teorica decisamente pitt intelligibile. Risolto il problema
dinamico del moto di un corpo grazie al modello geometrico dellelis-
se introdotto da Keplero, Newton unifico concettualmente il principio
cartesiano del moto rettilineo uniforme di una particella materiale in
vacuo, lalegge galileiana della scomposizione delle forze e le tre leggi di
Keplero circa i moti planetari, pervenendo cosi, progressivamente, alla
formulazione matematica della legge di gravitazione universale, secondo
la quale i corpi nell’universo si attraggono in ragione direttamente proporzio-
nale alle lovo masse e inversamente proporzionale alle loro distanze.

Tale legge rappresentava la definitiva unificazione della fisica ter-
restre e della fisica celeste, nel cui contesto la legge galileiana della
caduta dei gravi veniva vista come un caso particolare della legge di
gravitazione universale.

Si puo capire che Newton abbia detto «hypoteses non fingo» sulla
causa della gravitazione, essendosi pronunciato in favore di un tempo
e di uno spazio assoluti non avrebbe mai potuto trovare nella geome-
tria 'origine e l'interpretazione della gravitazione. E, del resto, come
avrebbe potuto immaginare una geometria diversa da quella euclidea,
'unica nota al suo tempo?

2. Allaricerca della simmetria: da Platone a Keplero
Una certa concezione della matematica, ispirata alle idee di equili-

brio, armonia e giusta proporzione fu elaborata da Platone e dai suoi
discepoli, e insegnata nell’accademia fondata da Platone ad Atene
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nel 387 a.C. Essa venne in seguito ripresa e sviluppata dalla corrente
neo-platonica. Uno dei contributi fondamentali della filosofia plato-
nica e del neoplatonismo allo studio della natura consistette nell'im-
portanza attribuita alla geometria nella formazione intellettuale. Nel
dialogo Repubblica, Platone rilevo la necessita della matematica come
esercizio per la mente che cerca di comprendere le forme nella loro
possibile perfezione. Gia per Platone, la geometria consente di cono-
scere cio0 che si conserva nel cambiamento, ed & percio 'origine di un
certo ordine (dinamico e non statico) della natura e forse della mente.
Oggi diciamo che la geometria (la quale nel frattempo si € arricchita di
molte nuove nozioni e teorie) cerca di conoscere quelle strutture ma-
tematiche che si conservano al seguito di determinate trasformazio-
ni (simmetrie) e deformazioni (per esempio immersioni), ed € questa
invarianza che assicura una certa stabilita del mondo matematico e
del mondo reale, che si suppongono essere profondamente connessi.
Nel Timeo Platone espone la sua cosmologia e consegna alla tradizione
successiva l'idea che tutto sia retto dalla simmetria, da rapporti e pro-
porzioni. I solidi platonici, cioé i sei poligoni regolari, sono una chiara
espressione di questo principio e riflettono I'idea che il mondo fisico
segue un certo ordine ideale senza mai pero poterlo raggiungere. A
questo proposito, il fisico Werner Heisenberg ha osservato che:

Per Platone, al limite inferiore [a fondamento] degli enti materiali non si
trova piu in realta qualcosa di materiale, ma una forma matematica; dicia-
mo una struttura che non é solo fisica, ma metafisica. Lelemento primordia-
le che ci permette di comprendere unitariamente il mondo &, in Platone, la
simmetria matematica, 'immagine, I'idea, da qui il nome d’idealismo per la
concezione platonica. [...] Per Platone la forma e caratteristica per le proprieta
dell’elemento materiale considerato, ne costituisce parte essenziale delle sue
proprieta fisiche. Contrariamente a quanto pensava Democrito, in Platone
le particelle di materia (terra, acqua, aria, fuoco) non sono invariabili e indi-
struttibili; al contrario esse possono essere scomposte in triangoli ed essere
ricostituite da triangoli (e dunque non hanno pit niente di fisico).

Tuttavia, fu Keplero a sottolineare tutta I'importanza della sim-
metria per la conoscenza delle “vere” cause dell'ordine del cosmo e del

197



Luciano Boi

mondo fisico. Per lui, non solo il cerchio e la sfera avevano anche un
significato in un certo senso “divino”, oltre che matematico, ma in pitt
riteneva che fossero archetipi che strutturano le proprieta e il diveni-
re dei fenomeni reali. Nello stesso tempo, egli capi che non erano gli
enti geometrici piu perfetti e neanche i piu atti a spiegare i segreti del
comportamento dei corpi naturali e celesti: infatti, sia la classe delle el-
lissoidi (analoghi tridimensionali delle ellissi), forme geometriche che
si ottengono a partire da una deformazione continua della sfera, che
quella dei poliedri (convessi) regolari contengono un pitt gran nume-
ro di simmetrie, e pertanto consentono determinate trasformazioni
impossibili da effettuare con il cerchio e la sfera. Poiché sono ricchi
in simmetrie e suscettibili di una molteplicita di trasformazioni che
lasciano invariate le proprieta essenziali dei corpi celesti, questi solidi
geometrici fungono, secondo il matematico e astronomo tedesco, da
modello per spiegare le leggi del sistema solare. Keplero ando ben oltre
Platone nel suo studio della natura e del ruolo delle simmetrie, e riusci
a fare quello che né Copernico né Galilei osarono fare. Solo contro tutti,
egli osera nell'Astronomia nova (1609) prima rinunciare al centro dei cer-
chi, poi rinunciare all'eccentricita del movimento e al moto uniforme,
e infine allo stesso cerchio, mostrando che si possono deformare le or-
bite circolari in orbite ovali e poi ellittiche, liberandosi cosi, come dira
nell'Astronomia nova, delle <macine dei cerchi».

Quando si parla del ruolo della simmetria nell’astronomia di Keplero
si pensa subito ai cinque poliedri regolari. In realta, il ruolo dei solidi
platonici é in Keplero via via sempre pitt marginale, allusivo e simbolico,
limitato alla determinazione del numero dei pianeti, mentre altre sim-
metrie, basate sugli accordi armonici e rivelatrici di forme naturali pitt
complesse, acquisteranno sempre pitt il ruolo di struttura portante del
cosmo e della natura®. Alla fine della sua fatica Keplero pensera di aver
trovato, tramite una struttura astratta o forma ideale di natura mate-
matica, il modo di tenere insieme numero di pianeti, distanze dei pia-
neti dal sole, periodi di rivoluzione, densita e masse dei pianeti, dimen-

3 Cfr. LuciaNo Bol, Symmetry and Symmetry Breaking in Physics: From Geometry to Topo-
logy, in «Symmetry», 13 (2021), pp. 2100-2120.
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sioni del cosmo... e persino teologia, anima e forma di governo. Nella
Dissertatio cum Nuncio Sidereo, pubblicata nel 1610, subito dopo aver letto
il Sidereus Nuncius di Galileo, Keplero espone i motivi del suo interesse
particolare per la geometria e per i poliedri regolari. Nella geometria,
dopo la sfera, vi & una famiglia di figure che é la pit perfetta di tutte,
quelle dei cinque solidi euclidei. Questo nostro mondo planetario sa-
rebbe disposto appunto secondo le regole e le proprieta di questi solidi.
Keplero é alla ricerca della costituzione del cosmo e la via per arrivare
a spiegarla sta nelle costruzioni che rispondono a certe simmetrie. La
chiave non sta nei numeri ma nella geometria, non tanto nella semplice
misura quanto nella forma del movimento. Mentre per Galilei le orbite
ellittiche rompono la simmetria del cosmo, per Keplero sono la strada
verso la scoperta di simmetrie ‘nascoste’ pitt profonde, consistenti in
rapporti e proporzioni tutte generate dal rapporto di quinta armonica
3/2. Anche quando Keplero cerco, nella Strena seu de nive sexangula (1611),
la causa della simmetria sexangula della neve non si diresse verso la
struttura atomica ma verso motivi formali di efficienza superficie-vo-
lume. Grazie a queste sue intuizioni, Keplero puo essere considerato
in qualche modo il precursore delle idee che condurranno Eulero e La-
grange a elaborare la teoria delle superfici minime e il calcolo delle va-
riazioni. Sono motivi formali — cioé attinenti alle proprieta intrinseche
e globali delle forme — che fanno si che 'uomo e il mondo risuonino allo
stesso modo. La proporzione nelle distanze e nella velocita dei pianeti &
tale da essere riconosciuta dalla mente umana che porta in sé come ar-
chetipi tali proporzioni. Per Keplero, le orbite ellittiche sono il risultato
della necessita fisica e delle leggi matematiche dell'armonia. Volendo
costruire il mondo secondo le leggi dellarmonia non bastano i solidi
regolari, che darebbero orbite circolari concentriche e velocita costanti;
le proporzioni armoniche costringono il creatore a far variare le velocita
dei pianeti. E poiché occorre rispettare la necessita materiale, le ragioni
della vis, la legge di variazione della velocita deve seguire la «legge del-
la bilancia» e questa impone orbite circolari o ellittiche. Sono dunque
escluse le orbite circolari eccentriche e i dati astronomici non consento-
no orbite circolari centrate sul sole. In sintesi: (1) dati astronomici + (2)
armonia + (3) necessita fisica di orbite ellittiche.
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3. Simmetrie, invarianze e leggi fisiche

Oggi sappiamo che quelle che credevamo essere le leggi della natura,
assolutamente certe e perennemente valide, rappresentano soprattut-
to (anche se non solo) le relazioni tra i fenomeni che abbiamo indaga-
to, e che la loro validita e limitata alla precisione con la quale abbiamo
osservato i fenomeni stessi. Allaumentare della potenza dei nostri
metodi d’indagine e all’estensione delle osservazioni a domini prima
inaccessibili, le leggi che avevamo credute eterne e universali si dimo-
strano essere solo approssimazioni di leggi pitt generali (...). Non leggi
della natura, dunque, ma leggi valide per quel modello di natura che ci
siamo fatti sulla base delle nostre limitate conoscenze. Cosi all'inizio
del nostro secolo il “libro” di cui parlava Galileo nel Saggiatore non ci
appare piu come libro della natura, ma come libro dei modelli della
natura che via via ci facciamo sulla base delle nostre osservazioni e de-
scrizioni fenomenologiche.

La nostra conoscenza della natura si esprime in relazioni matemati-
che. La cosa straordinaria é che quando nuovi fenomeni ci costringono
ad abbandonare un modello per sostituirlo con un altro piut generale,
quest'ultimo si rivela pit bello, cioé matematicamente pit strutturato
e pitt simmetrico, quasi che la ricerca della bellezza matematica coin-
cidesse con la ricerca della verita. In altre parole, la bellezza come cri-
terio estetico € un elemento intrinseco importante dell'indagine della
natura e della conoscenza delle cause dei suoi fenomeni; la bellezza ha
quindi valore estetico, euristico ed epistemico fondamentale®.

Il modello di indagine seguito da Galileo era fondato sullunione
dell’osservazione dei fenomeni e della generalizzazione astratta, ovve-
rosia, tra pratica sperimentale e ricerca di leggi generali. La matema-
tica ¢ il linguaggio nel quale il libro della natura ¢ scritto. Aver capito
che essa e la chiave per intendere la natura, almeno la natura dei fisici,

4  Per considerazioni approfondite su questo tema, cfr. LuciaNO Boi, Some Mathema-
tical, Epistemological, and Historical Reflections on the Relationship Between Geometry and
Reality, Space-Time Theory and the Geometrization of Theoretical Physics, from Riemann to
Weyl and Beyond, in «Foundations of Science» 24 (1), 2019, pp. 1-38.
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e stata probabilmente 'idea pit originale di Galileo: da una parte 'os-
servazione accurata dei fenomeni, sapientemente spogliati dei det-
tagli contingenti, ha suggerito nuove idee alla matematica (il calcolo
differenziale € nato cosi), dall’altro teorie elaborate per puro interesse
intellettuale dai matematici si sono dimostrate profondamente fecon-
de per interpretare fenomeni ignoti al tempo in cui tali teorie sono sta-
te inventate.

Molto significativa per le applicazioni fisiche fu la generalizzazio-
ne del concetto di spazio operata grazie alla scoperta delle geometrie
non euclidee, alla geometria intrinseca delle superfici curve e alla teo-
ria delle varieta differenziabili elaborate, rispettivamente, da Gauss e
Riemann®. Il concetto di spazio, liberato dalla rigida cornice euclidea
basata in parte sulla percezione visiva e tattile, fu esteso al di la delle tre
dimensioni tradizionali, a un numero arbitrario, anche infinito di esse.
La geometria entro nell'Ottocento in un periodo — che dura tutt’ora —
di straordinaria creativita inventando strutture matematiche nuove di
cui quelle note alla geometria euclidea sono solo casi particolari.

Un esempio della potenza dell’astrazione matematica é il passag-
gio dall'idea vaga di simmetria al concetto matematico di gruppo che
secondo Hermann Weyl® & il pitt originale fra quelli introdotti e svilup-
pati dalla matematica dell’Ottocento. Quella di simmetria & una delle
idee guida della scienza, la quale mira a spiegare i fenomeni conforme-
mente a leggi, cioe a regolarita, allinvarianza nel cambiamento. Nell’i-
dea di simmetria sono presenti due elementi: da un lato l'oggetto che &
simmetrico (che presenta certe regolaritd), il cerchio o il quadrato per
esempio, dall'altro le operazioni (o trasformazioni) che possiamo fare
sull'oggetto lasciandolo immutato; per esempio una qualunque rota-
zione del cerchio attorno a un asse passante per il centro e perpendi-

5 CARL FRIEDRICH GAUSS, Disquisitiones circa superficias curvas, Gottingen 1827, in
Werke, vol. 1v, Géttingen, 1873. GEORG FRIEDRICH BERNHARD RIEMANN, Uber die
Hypothesen, welche der Geometrie zu Grunde liegen, Habilitationsarbeit, 1854, in Ber-
nhard Riemann Gesammelte Mathematische, nuova edizione, Springer-Verlag, 1990,
pp- 304-319.

6 HERMANN WEYL, Symmetry, Princeton University Press, 1952.
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colare al piano del cerchio o, nel caso del quadrato, le rotazioni di 90°,
180°, 270° e 360° gradi.

In un linguaggio un po’ pitt preciso parliamo di un insieme I i cui
elementi designeremo con E , E , E,,.., E, (I per esempio il cerchio, gli
elementi E, E , E,..E, ipunti del cerchio) e di un gruppo G di tra-
sformazioni che chiameremo g, g,, g.,--., g, che agiscono su I nella ma-
niera seguente: la trasformazione g, applicata all'elemento E; lo manda
nell'elemento E, di I, cioe g, E=E,.

Concisamente diremo che l'insieme I & simmetrico o invariante ri-
spetto a G se una qualunque trasformazione di G manda un elemento
di I in un elemento di I. Sia 'insieme I che il gruppo G possono avere
un numero infinito di elementi: negli esempi che ho citato sia i punti
del cerchio che quelli del quadrato sono infiniti, le rotazioni di G che
lasciano invariato il cerchio sono infinite, quelle che lasciano invaria-
to il quadrato sono invece in numero finito, cioé formano un gruppo
finito. Nel primo caso abbiamo un gruppo continuo; nel secondo, un
gruppo discreto.

Un gruppo si dice continuo se ha un numero infinito di elementi,
e discreto se contiene un numero finito di elementi. I gruppi continui
sono molto importanti sia in matematica che in fisica perché collegano
profondamente il mondo dei “concetti” matematici agli “oggetti” del
mondo fisico tramite le operazioni di trasformazione, cambiamento e
invarianza. Possiamo definirli come quei gruppi in cui I'insieme degli
elementi, oltre ad avere una struttura di gruppo (vale a dire che gode
delle proprieta dellassociativita, dell’esistenza dell’elemento neutro e dell’e-
sistenza dell'inverso; ricordiamo che un gruppo si dice abeliano se tutti i
suoi elementi commutano, e non abeliano se non commutano), & anche
uno spazio topologico con topologia compatibile con l'operazione de
gruppo.

Fra i gruppi continui, i gruppi di Lie assumono particolare rilevan-
za in fisica. Si tratta di gruppi topologici in cui 'insieme di punti, oltre
ad essere uno spazio topologico, formano una varieta differenziabile.
Un gruppo possiamo pensarlo localmente isomorfo a R*. Citiamo al-
cuni dei gruppi pitt importanti. Il gruppo delle rotazioni nel piano R*
'elemento del gruppo prende il nome di SO(2) (gruppo delle matrici
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2x2 ortogonali con determinante 1); il gruppo e unidimensionale (cioe
dipende da un solo parametro reale, 'angolo di rotazione 6 di un vet-
tore (x, y)) ed € abeliano; € importante notare che I'elemento 6 e equi-
valente all’elemento 6 + 27 e cio rende il gruppo compatto in quanto
equivalente, come varieta, ad un cerchio. Nello spazio bidimensionale
complesso, il piano complesso di Gauss di equazione u =x + iy, si ha il
gruppo U(1) la cui rotazione é rappresentata dalla “matrice unidimen-
sionale” U(0) =€, che ¢ una fase. E importante osservare che le matrici
dei due gruppi precedenti soddisfano le stesse proprieta, quindi coin-
cidono, o, in termini matematici, sono isomorfi SO(2) ~ U(1). Essi go-
dono inoltre della seguente importante proprieta: I'azione del gruppo
puo essere ottenuta come composizione di un numero molto grande di
trasformazioni “infinitesime” successive. Due altri gruppi importanti
sono legati al momento angolare in Meccanica Quantistica. Si tratta
del gruppo delle rotazioni in R?, SO(3), e del gruppo SU(2) delle matrici
unitarie con determinante 1. Un gruppo topologico si dice compatto se
€ munito di una struttura di varieta topologica compatta, compatibi-
le con la struttura algebrica, le cui operazioni di gruppo che agiscono
sulla varieta sono funzioni continue. I gruppi di simmetrie di gauge
sono: il gruppo U(1) per l'elettrodinamica quantistica, il gruppo SU(2)
x U(1) per le interazioni elettrodeboli e il gruppo SU(3) per la cromodi-
namica quantistica. I gruppi di Lie sono gruppi topologici localmente
compatti. Un teorema importante ci dice che se G é un gruppo topologico
compatto, allora le sequenti proposizioni sono equivalenti: (a) G non ha sotto-
gruppi piccoli; (b) G é un sottogruppo chiuso di O(n) per qualche n>0; (c) G é
un gruppo di Lie.

Un gruppo euclideo si compone di rotazioni e traslazioni. Una ro-
tazione € urn'isometria, cioé una trasformazione geometrica che sposta
gli elementi in modo rigido lasciando inalterate le distanze. Ogni ro-
tazione del piano é definita da un punto O, detto centro di rotazione,
e da un angolo a caratterizzato da unampiezza e da un verso, che puo
essere orario o antiorario. Una traslazione & una trasformazione geo-
metrica che conserva la misura delle lunghezze e l'ampiezza degli an-
goli, due figure ottenute mediante una traslazione sono direttamente
congruenti. In fisica: (i) la traslazione corrisponde al seguente fenome-
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no: tutte le particelle descrivono traiettorie (le rette che uniscono due
punti qualsiasi di un corpo rimangono sempre parallele alla direzione
iniziale); ii) la rotazione intorno a un asse corrisponde al fatto che tutte
le particelle descrivono traiettorie circolari attorno a una retta chiama-
ta asse di rotazione.

Consideriamo ora un esempio pit ricco, il piano, che é illimitato.
E chiaro che il piano resta invariato (cioé immutato) se applichiamo
una traslazione a (ossia spostiamo) ogni punto P per un segmento
arbitrario A e anche se ruotiamo tutto il piano attorno a un asse ar-
bitrario perpendicolare al piano. Linsieme di tutte le traslazioni e
di tutte le rotazioni & un gruppo, detto gruppo euclideo. Ognuna di
queste rotazioni e traslazioni lascia invariata la distanza d (P, P’)
fra due punti qualunque P, P’ del piano. Una proprieta interessante
dei gruppi che appare quando si compongono due trasformazioni (o
azioni del gruppo): per esempio, se prima effettuiamo una trasla-
zione applicata al punto O (Porigine di due rette perpendicolari) e
una rotazione intorno a O di un angolo di 90°, poi ripetiamo que-
ste stesse operazioni invertendone l'ordine, cioé prima la rotazio-
ne poi la traslazione, otteniamo allora un risultato diverso da quello
che avevamo ottenuto prima: questa proprieta del gruppo si chiama
non-commutativitd. In altre parole, le rotazioni nel piano (attorno a
un asse perpendicolare al piano) e le traslazioni sono due operazioni
che non commutano.

4. Gli sviluppi concettuali della fisica nell’Ottocento: Newton, Maxwell,
Planck, Einstein

I1 quadro concettuale della fisica dell’Ottocento rimane quello defini-
to nei Principia di Newton (Philosophie naturalis principia mathematica,
1687): lo spazio euclideo assoluto e il tempo, anchesso assoluto, ambe-
due dati a priori ma rigorosamente separati, ambedue infiniti, sono la
sede dove si svolgono i fenomeni dovuti al moto e alle trasformazioni
della materia. Né i fenomeni influenzano la cornice spazio-temporale,
né questa reagisce sui fenomeni.
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Lelettromagnetismo di Maxwell, come la meccanica classica di
Newton, Euler, Bernoulli, Lagrange, Laplace, Hamilton, ecc., sembra-
va confermare una concezione deterministica dell'evoluzione tempo-
rale dei fenomeni: noto lo stato di un sistema fisico a un dato istante t_
e tutte le forze che agiscono su di esso, & possibile determinare lo stato
ad ogni istante successivo.

Lo “stato”, nel caso di un sistema di particelle in meccanica classica,
e definito dalla sua posizione nello spazio (coordinate spaziali) e dal-
la velocita a un dato istante, ove questa velocita puo rimanere costan-
te oppure variare con intervento dell'accelerazione, che rappresenta
quindi la derivata seconda rispetto al tempo. Caratteristica della fisica
dell’'Ottocento é la rappresentazione di tutte le grandezze fisiche con
funzioni reali e continue delle coordinate spaziali e del tempo, formula-
zione matematica dell'antica affermazione “Natura non facit saltus”, le
grandezze fisiche possono cosi essere moltiplicate fra loro e tale pro-
dotto ¢ indipendente dall'ordine dei fattori.

Il primo anno del secolo XX (1901) segno I'inizio di una nuova conce-
zione della materia. Nel dicembre del 1900 Max Planck presenta all’Ac-
cademia delle Scienze di Berlino la sua interpretazione dei risultati
sperimentali di Rubens et Kulbaum dalla quale emerge che dopo tutto
“Natura facit saltus”. Per un quarto di secolo questo risultato, estraneo
all'ortodossia scientifica ottocentesca, turbera i pit brillanti ingegni e,
quando finalmente verra interpretato, la fisica non sara pitt quella di
prima e la natura ci apparira qualcosa di molto meno meccanico e de-
terministico di quanto i filosofi dei lumi avevano cercato di far credere.

Qualche anno dopo la scoperta di Planck, si ha una delle tre gran-
di rivoluzioni scientifiche e concettuali della fisica del Novecento: la
scoperta della relativita ristretta ad opera di Albert Einstein nel 1905.
Questa teoria sta alla base di gran parte della fisica del Novecento, e
soprattutto ha introdotto una concezione dello spazio e del tempo che
ha profondamente cambiato la nostra visione della natura.

Facciamo un passo indietro. Qual e l'idea che Galileo aveva dello
spazio e del tempo? Nella sua visione, il tempo ¢é assoluto e lo spazio
é relativo, la misura dipende dal moto dei sistemi inerziali di riferi-
mento. Lapproccio sperimentale di Galileo consiste nello studio dei

205



Luciano Boi

fenomeni, i quali sono stati pensati per confermare un’ipotesi teorica.
Famoso é 'esempio in cui egli enuncia (nel Dialogo sopra i due Massimi
Sistemi del Mondo Tolemaico e Copernicano, 1632) il suo principio della rela-
tivita, vale a dire che i moti dei corpi sono gli stessi sia che ci si trovi in
uno stato di quiete sia in moto rettilineo uniforme, quindi le leggi della
meccanica sono le stesse in tutti i sistemi inerziali. Da cio si evince
che non e possibile stabilire se stiamo fermi o se ci muoviamo di moto
rettilineo uniforme, quindi non esiste lo stato di quiete assoluto: tutti
gli osservatori hanno pari valore in quanto ognuno puo considerare sé
stesso come Primo Motore Immobile.

Newton attribuiva allo spazio e al tempo la qualifica di assoluti, cioe
li considerava come qualcosa di dato a priori, fissi e immutabili, indi-
pendenti 'uno dall’altro; per ciascuno di essi vale la geometria eucli-
dea, rispettivamente quella dello spazio a tre dimensioni e quella di
una retta (a una dimensione). Ambedue sono infiniti: verso il passato e
verso il futuro il tempo; a Nord e a Sud, a Est e a Ovest, in alto e in bas-
so, lo spazio. La geometria della retta che rappresenta il tempo resta
invariata se spostiamo l'origine del tempo. Diciamo che nulla cambia
se a ogni tempo t, aggiungiamo o togliamo un qualunque tempo fisso.
Inlinguaggio preciso diciamo che la fisica e invariante rispetto alle tra-
slazioni temporali (cioé non cambia se cambiamo l'origine del tempo).

Per individuare un punto nello spazio occorre fissare un punto di
riferimento S, cioe dare un punto O e tre rette perpendicolari fra loro
nascenti da O: per esempio, O puo essere lo spigolo di una stanza e
le tre rette quelle definite dall'intersezione di due pareti e di ciascuna
di queste con il pavimento. Fissato il riferimento S, ogni punto dello
spazio é individuato da tre numeri (x', x2, x*), che rappresentano le di-
stanze, con segni opportuni, dai tre piani definiti da S: le due pareti e
il pavimento. Naturalmente invece di S, possiamo prendere un altro
riferimento S’ la cui origine & un altro punto O’ ottenuto da O con una
traslazione e le cui rette perpendicolari sono ruotate rispetto a quelle
che definivano il riferimento S. Nel riferimento S’ il punto P ¢ indivi-
duato da tre numeri diversi dai precedenti, chiamiamoli (X', X?, X?).
Come sappiamo, le proposizioni della geometria euclidea sono inva-
rianti rispetto alle trasformazioni (traslazioni e rotazioni del gruppo
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euclideo). Cio significa che esse mantengono la stessa forma sia che
le esprimiamo usando le coordinate (x', x*, x°) del sistema S sia che le
esprimiamo usando quelle (X, X?, X*) del sistema S'.

Siamo abituati a pensare lo spazio e il tempo come due concetti asso-
lutamente distinti, ma se esaminiamo la cosa attentamente ci rendiamo
conto che ¢ difficile pensare all'uno senza I'altro. Minkowski ha giusta-
mente osservato che nessuno ha mai visto un posto se non a un certo
tempo, né ha vissuto un istante se non in un dato posto. A questa unio-
ne di spazio e tempo si da il nome di evento, caratterizzato da quattro
numeri (!, X, x*, t): i primi tre precisano, rispetto a un dato sistema di
riferimento, la posizione nello spazio, e il quarto, t, l'istante corrispon-
dente rispetto a una data origine del tempo. Linsieme di tutti gli eventi
si chiama spazio-tempo ed e chiaramente uno spazio a 4 dimensioni.

Il primo a porsi il problema di quali movimenti relativi di due siste-
mi di riferimento fossero compatibili con le osservazioni fu Galileo, e
la soluzione che ne diede ¢ contenuta nel principio che oggi chiamia-
mo relativita galileiana, la quale era basata sull'osservazione di feno-
meni meccanici. Secondo tale principio, verificato la prima volta spe-
rimentalmente da P. Gassendi nel 1640, non ¢ possibile decidere con
esperimenti meccanici se il nostro sistema di riferimento sia in quiete
o si muova di moto rettilineo uniforme. Lunica cosa che ha senso ¢ il
moto relativo di due oggetti, non quello assoluto di un solo oggetto.

Gassendi fece 'esperienza suggerita da Galileo di lasciar cadere una
pietra dall'albero di una nave che si muoveva con velocita uniforme ri-
spetto alla riva in un mare calmo: la pietra cadde, come aveva predetto
Galileo, ai piedi dell'albero, come se la nave fosse ferma. Se ne conclude
che ¢ impossibile distinguere con esperienze meccaniche lo stato di
quiete da uno stato di moto rettilineo uniforme. Naturalmente il moto
deve essere rettilineo e uniforme: un moto accelerato ¢ facilmente av-
vertibile non foss’altro per gli effetti che esso provoca in ognuno di noi.

Tradotto in un linguaggio preciso questo significa che il principio
di relativita impone che le rotazioni (che nel caso della nave corrispon-
dono al rullio e al beccheggio) devono essere indipendenti dal tempo,
mentre le traslazioni devono dipendere linearmente dal tempo (cioé
essere proporzionali al tempo).
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Esplicitamente il principio di relativita galileiana significa che le
coordinate (x!, x2, 22, t) e le coordinate (x* - v't, x? - v*t, x> — v*t, t+ a°) dello
stesso evento in due sistemi che si muovono I'uno rispetto all'altro con
velocita v = (v!, v*, v*) sono perfettamente equivalenti. Le trasforma-
zioni che fanno passare da x' a x* — v't, ecc. formano un gruppo che si
chiama gruppo di Galileo, anche se Galileo non lo disse mai perché non
conosceva il concetto di gruppo.

La meccanica newtoniana é determinata dalla richiesta che le sue
equazioni siano invarianti rispetto alle trasformazioni del gruppo di
Galileo, allo stesso modo come, secondo Felix Klein (il matematico te-
desco autore del ben noto Programma d’Erlangen, 1872), la geometria
euclidea é determinata dalla richiesta che le sue proposizioni siano in-
varianti rispetto al gruppo euclideo.

Il gruppo di Galileo determina la struttura dello spazio-tempo
(lambiente della fisica), la quale oltre che a risultare tutt’altro che intu-
itiva e, dal punto di vista matematico, assai poco elegante. Cio deriva
dal fatto che lo spazio e il tempo sono trattati in maniera asimmetrica
nella meccanica classica, nella quale spazio e tempo hanno un ruolo
molto diverso. Lo spazio della fisica classica, matematicamente par-
lando, € uno “spazio fibrato”la cui base é la retta del tempo e le cui fibre
sono spazi euclidei tridimensionali.

Uno spazio fibrato & un concetto chiave della matematica del XX°
secolo. Va innanzitutto chiarito che I'idea di fibrato consiste nell’as-
sociare a ogni punto di una varieta uno spazio vettoriale della stessa
dimensione della varieta: quest'oggetto si chiama spazio tangente. Lu-
nione disgiunta degli spazi tangenti, detta fibrato tangente alla varieta,
ha a sua volta una struttura naturale di varieta, di dimensione pari al
doppio di quella della varieta di partenza. Il fibrato tangente & il primo
esempio di una classe molto importante di varieta, i fibrati vettoriali,
che possono essere descritti, in termini generali, come unione disgiun-
ta di spazi vettoriali associati in modo differenziabile ai punti di una
varieta di base. La definizione formale dei fibrati vettoriali comprende
lo studio delle sezioni dei fibrati vettoriali, cioé le applicazioni differen-
ziabili che associano a ciascun punto della varieta base un vettore nel
corrispondente spazio vettoriale. Le sezioni del fibrato tangente sono
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i campi vettoriali. In questo modo il fibrato diventa un oggetto dinami-
co. Infatti, dare un campo vettoriale &€ come assegnare in maniera dif-
ferenziabile un vettore velocita a ciascun punto della varieta base; un
punto della varieta che si muove seguendo questa velocita percorre una
curva detta curva integrale del campo vettoriale. Seguendo le curve inte-
grali per un tempo prefissato si ottiene un'applicazione differenziabile
da un aperto della varieta a valori nella varieta stessa, detta flusso del
campo vettoriale. In termini generali, la definizione formale é la se-
guente: una funzione continua p : E > B € un fibrato con spazio totale E,
spazio di base B e spazio fibra F se esiste un ricoprimento aperto {U} di
B, e per ogni U € {Utun omeomorflsmo ¢,:UxF>p™(U)conp. o, (x,)
=xperx€Uey € F;perognib € B, p(b), che e omeomorfa a F, si defi-
nisce la fibra sopra b. Il fibrato {=(E, B, F, p) viene inoltre fornito di un
gruppo strutturale G, che agisce su E e su F. Si tratta di una struttura
molto ricca e, in particolare, se lo spazio di base B soddisfa a particolari
condizioni, la proiezione p del fibrato € una fibrazione. Il concetto di
fibrato ha avuto unampia diffusione in molti settori della matematica
e della fisica. E di particolare interesse il fatto che ogni moderna teoria
di gauge si basa sullo studio di un fibrato vettoriale, mentre la struttura
globale dei fibrati permette la formalizzazione del concetto di istanto-
ne e della carica topologica; inoltre, lo studio di grandezze gauge-in-
varianti ha portato alla classificazione degli spazi fibrati mediante le
classi di Chern (classi di coomologia definite su un fibrato vettoriale
complesso n-dimensionale) su un fibrato complesso.

5. La relativita speciale (o ristretta) di Einstein

La teoria dell’elettromagnetismo, formulata da Maxwell nel suo A
treatise on electricity and magnetism (1873) suggeri a Einstein nel 1905 la
prima profonda revisione del modello newtoniano dello spazio-tem-
po. Nelle equazioni di Maxwell compare una velocita ¢ che 'esperienza
dimostra essere uguale alla velocita della luce nel vuoto, ¢ =3 x 10° m/s.
Fu questa coincidenza, a priori inaspettata, a permettere di includere
Pottica tra i fenomeni elettromagnetici e a fornire cosi la pit esplicita
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conferma della teoria di Mawxell. Come dimostrd una celebre espe-
rienza compiuta da Michelson nel 1879 e in seguito perfezionata nel
1904, la velocita della luce emessa da una sorgente in moto con velocita
v é indipendente da v. La velocita della luce appare dunque come la
velocita massima con cui si propaga un segnale. Nello spazio-tempo
newtoniano una tale velocita non trova posto, perché in esso non esiste
alcun limite superiore alla velocita.

Il problema che si presento ad Einstein era dunque quello di ricon-
ciliare il principio di relativita, l'impossibilita cioe di rivelare un moto
rettilineo uniforme che I'esperimento di Michelson dimostra esser va-
lido per tutta la fisica e non solo per la meccanica — con la costanza
della velocita della luce, cioe con la violazione dell'invarianza rispet-
to alle trasformazioni di Galileo che non ammettono nessuna veloci-
td massima. E chiaro anche che lesistenza di una velocita massima
con cui si possono trasmettere segnali e inconciliabile con lo schema
spazio-temporale newtoniano che ammette la possibilita di definire
la contemporaneita di eventi separati da qualunque distanza spaziale
anche infinita. Le modificazioni del concetto di contemporaneiti rappre-
senta l'essenza della relativita einsteiniana e della nuova concezione
dello spazio-tempo.

Si deve comunque a Poincaré la formulazione precisa del gruppo
di trasformazioni che lasciano invarianti le equazioni di Maxwell (in
una memoria apparsa nei Rendiconti del Circolo Matematico di Palermo,
1897). Sono trasformazioni lineari (ci6 dipendenti solo dalla prima
potenza delle coordinate (x', x2, x%, t) e le coordinate (X', X, X3, 1))
dello stesso evento in due diversi sistemi di riferimento in moto re-
lativo con velocita v; le trasformazioni dipendono dal rapporto (v/c?)
e sono tali che nellimite in cui ¢ tende all'infinito si riducono a quelle
di Galileo.

La geometria dello spazio-tempo della relativita speciale & quindi
diversa da quella immaginata da Newton ed ¢ matematicamente pitt
elegante e concettualmente piu soddisfacente di quest’ultima. Infatti
lesistenza di una velocita privilegiata ¢ permette di trattare spazio e
tempo sullo stesso piano, associando a un tempo t una distanza x* = ct.
Percio tempo e spazio non sono pit grandezze distinte e incommen-
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surabili come per Newton: conoscendo c ci basta un solo strumento per
misurare entrambe.

E quello che facciamo quando parliamo di anno-luce, cio¢ la distan-
za che la luce percorre in un anno = ¢ x 1anno =3 x 10° (m/s) x 3 x 10’s =
9.3 x 10” m). Lo spazio-tempo diventa cosi molto pit simile allo spazio
tridimensionale in cui viviamo, cioé diventa, matematicamente par-
lando, uno spazio vettoriale, i cui punti sono eventi che avvengono nello
spazio-tempo.

Molto simile ma non analogo, perché la geometria dello spa-
zio-tempo non e uguale a quella dello spazio euclideo tridimensionale.
In quest’ultimo qualunque rotazione o traslazione facciate, il quadrato
I* della distanza tra due punti resta invariato. La geometria dello spa-
zio-tempo invece e determinata dal gruppo di Poincaré per il quale la
distanza spaziale I* per due eventi e I'intervallo di tempo che li separa
non sono singolarmente invarianti come avveniva per lo spazio-tempo
della meccanica newtoniana: solo la combinazione di spazio e tempo
data da (x)* + (x?)* + (*)* - (x*)* rimane invariata (si noti che [* = () +
(x*?* + (%))>. Spazio e tempo risultano cosi intimamente connessi sep-
pur in maniera non del tutto simmetrica a causa del segno — davanti a
(x*)?; la combinazione s? = (x)? + (x*)? + (x*)* — (x*)* non & quadratica, cioé
non ¢ il quadrato delle distanze del punto O di coordinate (o, 0, 0, 0)
dal punto P di (x, x2, 2, x*), perché i quadrati delle distanze sono per
definizione positivi o nulli solo quando i due punti coincidono.

6. Larelativita generale e I'interazione tra geometria (curvatura) e fisica
(materia)

Lo spazio della relativita speciale, pur essendo con le sue quattro dimen-
sioni abbastanza lontano dall'intuizione comune, ha tuttavia una strut-
tura geometrica (relativamente) semplice. Esso condivide alcune delle
sue proprieta con il piano e lo spazio euclideo, ad esempio il fatto che sia
illimitato e infinito. Noi sappiamo pero che ci sono delle superfici e degli
spazi che sono illimitati e pur finiti, per esempio la sfera e gli ellipsoidi,
sui quali la geometria d’Euclide non e pit valida (o e valida solo local-
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mente, cioé in porzioni infinitesimamente piccole della superficie). In
particolare queste superfici e questi spazi sono curvi e non piatti. Perché
non pensare allora che lo spazio-tempo sia anch’esso uno spazio-tem-
po curvo e limitato? Uno spazio-tempo infinito e illimitato come quello
della relativita speciale, implica quasi necessariamente un universo an-
chlesso infinito e illimitato nello spazio e nel tempo, ed & proprio questa
concezione cosmologica che ha dominato il pensiero scientifico e filoso-
fico dal Seicento fino quasi agli anni trenta del secolo scorso.

La considerazione e lo studio degli spazi curvi ha costituito un ele-
mento di profondo cambiamento concettuale nella matematica e nella
fisica che ha trasformato in particolare il modo di concepire i rapporti
tra geometria e fisica.

Abbiamo visto che I'invarianza dei fenomeni elettromagnetici rispet-
to al gruppo di Poincaré ha un'evidenza sperimentale e che questa inva-
rianza € a favore di una fisica ambientata in uno spazio-tempo piatto,
infinito e illimitato. Ma questo modello di spazio-tempo non & concet-
tualmente soddisfacente. Infatti, mentre sia la relativita galileiana che
quella speciale di Einstein ci hanno insegnato 'impossibilita di rivelare
una velocita uniforme assoluta (solo quella relativa ha senso) i moti ro-
tatori (o pitt generalmente accelerati) danno luogo a fenomeni rivelabili,
per esempio quelli dovuti alle forze centrifughe (in particolare la forza
apparente d’inerzia in un sistema di riferimento in moto circolare). Per
Newton le rotazioni andavano considerate unicamente rispetto allo spa-
zio assoluto, cioé a un sistema di riferimento privilegiato. Per Newton &
dunque nello spazio che va ricercata 'origine delle forze centrifughe e di
altre simili. Ma se lo spazio da origine a forze che agiscono sulla materia
mentre quest'ultima non reagisce in alcun modo sullo spazio, si ha fra
spazio e materia una relazione asimmetrica assai poco intelligibile.

La svolta avviene con Gauss e soprattutto con Riemann, il quale nel
1854 (nel suo scritto di Abilitazione) aveva osservato che questa asim-
metria fra spazio dato a priori, che agisce sulla materia, e la materia
che occupa lo spazio lasciandolo immutato € concettualmente insod-
disfacente: non ha senso infatti parlare di proprieta dello spazio senza
tener conto della materia, né del moto di questa senza considerare la
struttura geometrica dello spazio.
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Del resto senza materia non e possibile conoscere la struttura del-
lo spazio, non foss’altro perché senza materia non esisterebbero stru-
menti (i corpi rigidi e i metri campione di cui parla prima Helmholtz e
poi Einstein) per misurare lunghezze e intervalli di tempo e cioe per de-
terminare la struttura metrica (locale) dello spazio-tempo. E pitt logico
pensare che sia la distribuzione della materia a determinare la geome-
tria dello spazio-tempo e che questa a sua volta prescriva I'evoluzione
dei fenomeni fisici e in particolare le leggi del moto. Cio vuol dire supe-
rare lo schema concettuale che aveva determinato tutta la fisica da Gali-
leo e Newton in poi: uno spazio-tempo rigidamente fissato a priori, nel
quale si svolgono i fenomeni dovuti alla materia, quasi come una sto-
ria che si svolge in una scena immutabile. In luogo di questo schema,
Riemann propone una concezione pilt profonda e pitt complessa nella
quale materia e spazio-tempo (fenomeni fisici e strutture geometriche)
siano inseparabilmente congiunti e dinamicamente interdipendenti:
'una, la materia, determina la struttura geometrica dello spazio-tem-
po, e questa a sua volta determina le leggi del moto della prima.

Per la sua teoria della relativita generale Einstein considera non
solo sistemi di riferimento in moto relativo uniforme, ma anche siste-
mi in moto accelerato. Il moto uniformemente accelerato vale per ogni
corpo, indipendentemente dalla sua massa e dalla sua composizione,
il che vuol dire che l'accelerazione che subisce un corpo dipende solo
dal campo gravitazionale, cioé dalla forza per unita massa. Tale campo
puo annullarsi se si usa un sistema di riferimento fisso in caduta libe-
ra. Einstein ebbe la grande intuizione fisica che la peculiarita della gra-
vitazione (della forza gravitazionale) & 'uguaglianza fra massa inerzia-
le (il coefficiente che moltiplica 'accelerazione) e massa gravitazionale
(il coefficiente che moltiplica il campo gravitazionale).

Leliminazione del campo gravitazionale con I'uso di un sistema di
coordinate in caduta libera non puo ottenersi globalmente su tutto lo
spazio-tempo, a meno che il campo gravitazionale non sia costante.
Se invece esso varia da punto a punto occorre, per eliminarlo, in ogni
punto, un diverso sistema di coordinate (sistema di riferimento). Si
e cosi condotti a considerare trasformazioni di coordinate generali
(invertibili) che dipendono in maniera continua e differenziabile dal
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punto, trasformazioni dunque molto pitt generali di quelle di Poincaré
che caratterizzano la geometria della relativita speciale. Queste nuove
trasformazioni sono quelle della geometria riemanniana che valgono
per ogni spazio curvo a n dimensioni (»n > 3) dotato di una metrica che
varia localmente in ognuno dei suoi punti.

In altre parole, quello che ora ¢ richiesto rispetto alle trasformazio-
ni di Poincaré per la relativita speciale e soltanto che tale geometria
(riemanniana) valga in un intorno piccolo di ciascun punto (cioe local-
mente) dello spazio-tempo, ma non globalmente. La situazione é si-
mile a quella che si ha su una superficie curva bidimensionale, la Terra
per esempio, la cui geometria, in un intorno piccolo di ogni suo punto,
puo essere approssimata dal piano tangente a tal punto, la quale pero
non vale globalmente sulla superficie.

Similmente la teoria della relativita generale richiede che le leggi
della fisica siano invarianti rispetto a trasformazioni generali delle
coordinate locali (cioe in ogni punto) dello spazio-tempo. Cio signifi-
ca ammettere che la struttura dello spazio-tempo sia meno rigida di
quella che avevamo supposto sin qui e sia invece quella di uno spazio
curvo la cui curvatura sia determinata dall’effetto gravitazionale della
materia e a sua volta influenzi la distribuzione della materia nell'uni-
verso.

La relativita generale ¢ la prima teoria fisica in cui la struttura del-
lo spazio-tempo non é data a priori ma va determinata risolvendo un
sistema di equazioni assai complicate, dette equazioni di Einstein, che
contengono come incognite le grandezze che determinano la geome-
tria dello spazio-tempo e la sorgente del campo gravitazionale. Secon-
do la teoria della relativita generale, le proprieta geometriche dello
spazio-tempo, quali la distanza fra due eventi infinitamente vicini, la
curvatura, ecc., variano in genere da punto a punto, come avviene in
generale sulle superfici curve. Tali proprieta sono la manifestazione
geometrica del campo gravitazionale dovuto alla materia: per esem-
pio, la generalizzazione del potenziale gravitazionale di Newton é le-
gata alla distanza fra punti infinitamente vicini, e le forze gravitazio-
nali di marea (cioé la variazione del campo gravitazionale per unita di
distanza) sono legate alla curvatura dello spazio-tempo. Precisamente,
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le equazioni di Einstein sono equazioni alle derivate parziali non line-
ari che legano le componenti del tensore metrico g, e le loro derivate
prime e seconde alle componenti del tensore energia-impulsione T;
della materia.

Due concetti matematici fondamentali per capire la relativita ge-
nerale sono quelli di “trasporto parallelo” e di “connessione”. In ter-
mini intuitivi, il concetto di trasporto parallelo si puo descrivere come
segue. Immaginiamo di spostare un vettore lungo un cammino chiuso
formato di archi di geodetiche, sotto la condizione che rimanga fis-
so I'angolo tra il vettore e la geodetica lungo la quale si muove. Se si
esegue 'operazione su di un piano, il vettore ritorna puntato lungo la
direzione di partenza, ma in uno spazio curvo si ottiene un risulta-
to ben diverso. Sulla Terra esiste, per esempio, un ottante (triangolo
geodetico equilatero) avente come vertici il Polo Nord, Quito, capitale
dellEquador, e Libreville, nello Zaire, e avente come lati I'arco di me-
ridiano Polo Nord-Quito, I'arco di equatore Quito-Libreville e infine
I'arco di meridiano Libreville-Polo Nord. Gli angoli interni dell'ottante
valgono 7/2. La formula qui sopra si scrive allora come: ¢ + f§+y — 7w =
7/2 = Area/R*. Larea dell'ottante vale quindi wR?/2, ossia 'ottava par-
te dell’area terrestre 4mR?. Partiamo ora dal Polo Nord con il vettore,
usando la convenzione di Levi-Civita; ritorneremo al Polo Nord con il
vettore ruotato di 7w/2. Il risultato ha validita universale: il vettore che
fail giro di un triangolo geodetico torna ruotato dell’angolo Area x Cur-
vatura, ossia di un certo difetto angolare ¢; in altri termini, il cammino
non ¢ un invariante conforme. Il vantaggio della nozione di Levi-Ci-
vita sta nella sua validita per cammini chiusi che non sono triangoli
e che non sono neppure composti da archi di geodetiche. Infine essa
permette un'immediata applicazione a spazi di dimensione qualsiasi,
per cui l'uso del triangolo appare assolutamente inadeguato. Cammini
chiusi che possono deformarsi 'uno nell’altro senza incontrare zone in
cui esiste curvatura sono equivalenti agli effetti del trasporto parallelo.

La connessione € un oggetto geometrico tra i pitt importanti dell’a-
nalisi tensoriale; esso fornisce un metodo per valutare la velocita con
cui i vettori e i tensori variano in modo infinitesimale su una varieta
riemanniana. Loperatore V dato da Vdu = Fkii dwdu" (dove I'"ii defini-
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scono i simboli di Christoffel, con indici che possono variare da 1a »)
prende il nome di connessione di Levi-Civita. Esso viene usato per intro-
durre la nozione di parallelismo, che permette di stabilire quando un
tensore € costante lungo una curva negli spazi curvi e n-dimensionali
considerati da Riemann. La struttura indotta dal prodotto scalare ca-
nonico (o forma bilineare simmetrica) € un esempio di metrica riemanniana
suunavarieta, mentre la derivazione di un campo vettoriale (pittin ge-
nerale, la derivata covariante) nella direzione data da un altro € un esem-
pio di connessione. Una metrica riemanniana permette di misurare la
lunghezza di vettori tangenti, la lunghezza di curve e di introdurre la
distanza fra due punti; una connessione permette di derivare campi
vettoriali, e in particolare di dare una nozione di campi costanti lungo
curve (chiamati campi paralleli). Va sottolineato che su ogni varieta si
possono definire infinite connessioni e infinite metriche riemanniane.

Notiamo, a questo proposito, che nel 1918 Hermann Weyl sviluppo
la geometria differenziale affine, basata esclusivamente sulla nozione
di parallelismo e non sulla metrica riemanniana; assumendo il pun-
to di vista della teoria degli invarianti, egli creo nel 1921 la teoria delle
connessioni proiettive e conformi; in una serie di lavori pubblicati tra
il 1923 e il 1925, Elie Cartan sviluppo anche la teoria delle connessioni
affini, proiettive e conformi secondo il punto di vista del Programma
di Erlangen di Felix Klein, cioé facendo agire un determinato gruppo,
un gruppo di Lie, sulla varieta; I'associazione dei gruppi di Lie semplici
e la geometria differenziale delle varieta differenziabili culmino nella
sua scoperta degli spazi riemanniani simmetrici, i quali offrono una
naturale generalizzazione della superficie sferica nello spazio euclideo
e del disco unitario nel piano complesso con la metrica non euclidea di
Poincaré.

E importante peraltro sottolineare che l'esistenza di una metri-
ca riemanniana o di una connessione con determinate proprieta (in
particolare riguardanti la curvatura) puo avere delle conseguenze sulla
topologia della varieta; in altri termini, ci puo essere una relazione di-
retta tra la curvatura e la topologia globale di una varieta, dotata di una
metrica riemanniana. Per esempio, la curvatura positiva determina la
topologia, cioe la forma e le proprieta globali, di certe varieta rieman-
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niane. Si tratta del problema pit generale del rapporto tra proprieta
locali e proprieta globali. Sappiamo che la curvatura di una curva o di
una superficie si puo determinare esaminando soltanto una piccola
regione intorno a un punto, ma ¢ chiaro che questa nozione di tipo
locale puo influire sullandamento della curva o della superficie nella
loro globalita. Per esempio, proprio la curvatura della sfera é responsa-
bile della sua chiusura su se stessa e quindi del fatto che la sua area sia
finita. Anche la teoria delle geodetiche mette in risalto la differenza tra
locale e globale. In una regione sufficientemente piccola di una super-
ficie, la geodetica tra due punti é l'unica curva che individua il percorso
di minima distanza da un punto all’altro; dal punto di vista analitico, si
tratta della traiettoria di una particella le cui coordinate u'(t) verificano
le seguenti equazioni alle derivate parziali del secondo ordine, i* + F’*ij
uw =0 (k=1, 2), dove i punti sopra le lettere indicano le derivate rispet-
to a t. Invece, se la regione considerata si aggrandisce (supponiamo
di gonfiare una palla piatta) si viene a perdere la proprieta di unicita,
come nel caso della sfera, in cui le geodetiche coincidono con i cerchi
massimi. Lo studio di altre superfici su cui le geodetiche si richiudono
su se stesse come nel caso della sfera, dando luogo alla proprieta della
convessita, rappresenta un problema affascinante con conseguenze in-
tuitivamente assai evidenti per il chiarimento di alcuni problemi fon-
damentali in diversi settori della fisica.

Il teorema di Gauss-Bonnet (la cui prima formulazione si deve a
Gauss) racchiude I'essenziale degli sviluppi appena ricordati. Un suo
enunciato pitt recente e completo (trattato dalla topologia differenziale
e algebrica) si ottiene dividendo una superficie chiusa ¥ dello spazio
tridimensionale in un certo numero di triangoli geodetici (questo me-
todo é chiamato triangolazione delle varietd) e sommando il contributo
dell'espressione /,KdA = a-+{3+y-m (dove I'integrale del primo membro
e approssimato dalla somma dei prodotti della curvatura K per I'area
di regioni infinitesime) per ciascuno di essi. Ne segue che [, KdA =2y,
dove il numero x denota la caratteristica di Eulero di ¥. Quest’ultima
equazione ¢ la pitt semplice di una famiglia considerevole di equazioni
che mettono in relazione la curvatura di un oggetto con la sua topolo-
gia. Siosservi inoltre che essa non cambia quando viene fatta variare la
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metrica assegnata tramite la prima forma fondamentale della super-
ficie. Dal teorema di Gauss-Bonnet si deduce che la sfera e I'unica su-
perficie chiusa a curvatura gaussiana costante positiva, mentre il toro
é l'unica superficie chiusa a curvatura identicamente nulla. Esistono,
invece, molte superfici di curvatura gaussiana costante negativa, che
presentano una geometria iperbolica. Tra i modelli pitt noti, citiamo
la pseudosfera (scoperta da Eugenio Beltrami) formata dalla rotazione
di una curva particolare, la trattrice, e il semipiano superiore formato da
tutti i punti (x, y) con y positivo, su cui vale una metrica iperbolica (que-
sto modello e dovuto a Poincaré).

7. Brevi cenni sul ruolo delle simmetrie in meccanica quantistica e nelle
teorie di gauge

Secondo il grande fisico teorico Werner Heisenberg (1965),

11 conflitto tra materialismo e idealismo ha segnato l'intera storia della
filosofia, in particolare la storia della fisica. Questa antitesi & stata resa nuo-
vamente attuale in una forma ben precisa dalla fisica atomica moderna, in
particolare dalla teoria dei quanta. Fino alla scoperta del quanto d’azione di
Planck, le moderne scienze naturali esatte, fisica e chimica, erano orienta-
te materialisticamente. Nel secolo decimonono si consideravano gli atomi
della chimica e le loro parti che oggi chiamiamo particelle elementari come
cio che esiste veramente, come il substrato reale d’ogni materia. Sembrava
che l'esistenza degli atomi fosse una cosa evidente, indubitabile, e che non
avesse bisogno di spiegazione. Ma Planck aveva svelato nei fenomeni di ra-
diazione un carattere di discontinuita che sembrava collegato in modo sor-
prendente con l'esistenza degli atomi, e che d’altra parte non poteva essere
spiegata in base alla loro esistenza. Questo carattere, rivelato dal quanto
d’azione, fece pensare che tanto la discontinuita, quanto l'esistenza degli
atomi fossero manifestazioni comuni di una legge fondamentale della natu-
ra, d'una struttura matematica insita nella natura, e che la sua formulazio-
ne potesse condurre a un'unificazione delle nostre idee sulla struttura della
materia. E proprio cid che avevano tentato i filosofi greci. Dunque l'esistenza
degli atomi non era forse un fatto primordiale, non suscettibile di ulteriori
spiegazioni. Quest’esistenza poteva anzi essere ricondotta, come in Plato-
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ne, all'azione di leggi naturali formulabili matematicamente, dunque all’a-
zione di simmetrie matematiche.

In effetti, le leggi delle radiazioni di Planck si distinguevano in un
modo assai caratteristico dalle leggi naturali formulate in preceden-
za. Se le leggi naturali precedenti, per esempio quelle della meccanica
di Newton, contenevano delle cosiddette costanti, queste designava-
no delle proprieta di oggetti, per esempio la loro massa o l'intensita
della forza agente fra due corpi, o cose simili; invece il quanto d’azione
di Planck, che appare come la costante caratteristica nella sua legge
delle radiazioni, non rappresenta una proprieta di oggetti ma una
proprieta della natura. A questa nuova concezione della natura con-
tribuirono la scoperta di Planck (1900) sul corpo nero e il fenomeno
della radiazione, e la scoperta di Einstein (1905) sul comportamento
discreto dei fotoni. Il passo successivo furono le prime idee sulla mec-
canica quantistica. Nel 1913, Niels Bohr introdusse due postulati che
apparivano ingiustificabili nellambito della fisica classica: (a) ogni
atomo é caratterizzato da una successione discreta di livelli energetici
E,E,E..In condizioni normali, l'atomo si trova nel livello di ener-
gia pit bassa E, ma se viene perturbato, per esempio scaldandolo, puo
portarsi in uno dei livelli eccitati E,, E,,... dai quali dopo brevissimo
tempo (circa 107° s) si ritorna al livello pit basso; (b) le frequenze an-
golari v, delle righe spettrali di un atomo sono caratterizzate da una
coppia (i, /) di numeri interi e sono legate alle energie E , E , .. dei livelli
energetici della relazione 7w = E. - E. (E, > E). In questa relazione, %
é la stessa costante introdotta da Planck nello studio dello spettro del
corpo nero, e da Einstein per interpretare l'effetto fotoelettrico. I po-
stulati di Bohr non trovano spiegazione nella fisica classica secondo la
quale I'energia puo assumere ogni valore e non soltanto valori discre-
ti. Lunica conclusione che si doveva trarre era dunque I'inapplicabilita
della fisica classica ai fenomeni connessi alla struttura dell’atomo. Bi-
sognava ammettere che, almeno all'interno dell’atomo, «Natura facit
saltus», e abbandonare il sogno che le leggi scoperte dall'osservazione
dei fenomeni macroscopici fossero le leggi universali della natura, va-
lide comunque.
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Lo sviluppo della fisica spettrale, grazie a raffinati strumenti d’in-
dagine e delicate apparecchiature, metteva in grado i fisici di osservare
un mondo fino ad allora del tutto invisibile, una regione della natura
che, a tutti gli effetti, fino ad allora non esisteva. Era ormai chiaro che
componenti invisibili e microscopici come elettroni, fotoni, nuclei si
comportavano in modo molto diverso dagli oggetti del nostro mondo
macroscopico. Illinguaggio con il quale gli spettri del mondo atomico,
cioe le righe spettrali, o la curva continua del corpo nero, € assoluta-
mente incomprensibile a chi non conosce quel linguaggio, il quale &
decodificabile solo attraverso complicati ragionamenti matematici che
hanno una connessione solo indiretta con l'osservazione fenomenolo-
gica iniziale; ed € percorrendo un lungo cammino di elaborazione e
comprensione matematica che spesso i fisici giungono a scoprire “te-
sori”, cioé proprieta e comportamenti del mondo fisico di ineffabile
bellezza.

Un fenomeno spettrale, come quello della distribuzione spettrale
della radiazione del corpo nero (nel modello teorico che lo descrive si
riportano sulle ascisse le lunghezze d’'onda — proporzionali all'inverso
della frequenza — in unita di 10”7 m; sulle ordinate I'intensita in unita
convenzionali; i numeri sulle curve indicano le temperature assolute;
allaumentare della temperatura il massimo della distribuzione si spo-
staverso le lunghezze d’'onda minori) e riproducibile sperimentalmen-
te. La natura spettrale fa parte quindi della realta fisica (cristalli liqui-
di, laser, molecole, ecc.), ed essa presenta una straordinaria varieta e
un ordine che rimane ancora in gran parte un mistero.

Sia la relativita ristretta che quella generale hanno avuto ciascu-
na come punto di partenza e come motivazione un solo fatto speri-
mentale: la costanza della velocita della luce per la prima, il principio
d’equivalenza della massa inerziale e della massa gravitazionale per la
seconda.

La meccanica quantistica ¢ stata scoperta grazie a una ricca e varia
fenomenologia disponibile, che andava tuttavia interpretata teorica-
mente e generalizzata matematicamente per acquisire un fondamento
sicuro. Questo lavoro di generalizzazione teorica lo si deve innanzi-
tutto a Heisenberg, al quale segui I'opera importante di Dirac, Born e

| 220



Sul concetto di simmetria

Jordan, preceduti dai risultati gia ottenuti da Bohr. Le loro scoperte e
Ielaborazione teorica della meccanica quantistica rivelo innanzitutto
che quello che fino ad allora avevamo letto nel “libro della natura” non
era una descrizione di tutta la natura, ma un modello approssimato
della natura valido solo nell’ambito dei fenomeni dai quali era stato de-
rivato ma che non potesa essere esteso a priori al di Ia di tale ambito.

Forse dovremmo rinunciare alla speranza di scoprire «le vrai sy-
stéme du monde» (di Laplace). Lo comprese subito Einstein quando,
al giovane Heisenberg che gli esponeva la sua teoria disse: «Se le sue
idee fossero giuste dovremmo limitarci a parlare solo di quello che
conosciamo della natura e non di quello che la natura realmente fa».
Heisenberg non rinuncio a cercare di capire “quello che la natura re-
almente fa”, a una nuova possibilita di pensiero. Per questo bisogna
partire dalla consapevolezza, secondo il fisico tedesco, che «I'estensio-
ne dellindagine scientifica a nuovi campi di esperienza avviene ben
diversamente che applicando ad oggetti nuovi i principi precedente-
mente noti». Si trattava di cambiare questi stessi principi. Il muta-
mento che occorreva introdurre nella meccanica classica non era una
modifica delle leggi del moto, quanto piuttosto la rinuncia a qualche
concetto fondamentale. Lispirazione gli venne da un esame della rela-
tivita d’Einstein. Scrive Heisenberg:

Il centro della relativita speciale € la constatazione che la contemporaneita
di due eventi in differenti luoghi € un concetto problematico. Similmente per
la teoria dei quanti é della massima importanza la constatazione che non é
sensatamente possibile parlare simultaneamente di una precisa posizione e
di un preciso impulso di una particella.

E questo il contenuto del principio di indeterminazione, che Hei-
senberg espose in un fondamentale lavoro del 1927 (“Uber die anschau-
lichen Inhalt der quantentheoretische Kinematik und Mechanik”,
Zeitschrift fiir Physik), uno dei testi classici della letteratura scientifica
del Novecento. In questo articolo Heisenberg dedusse dal formalismo
della meccanica quantistica, che egli stesso aveva introdotto due anni
prima, il significato fisico e intuitivo (anschaulich Ihnalt) della nuova

221



Luciano Boi

meccanica. Formalmente il principio d'indeterminazione é espresso
dalla celebre diseguaglianza

Aq.Ap =Y hl2m,

dove Aq e Ap sono rispettivamente I'incertezza nella misura della po-
sizione (spaziale) q e quella della misura dell'impulsione p di una par-
ticella (che é una variabile temporale). La diseguaglianza non dice che
non si possa misurare con assoluta precisione la posizione q o la com-
ponente dell'impulso p impulso ¢ il prodotto della massa per la velo-
cita). Afferma solo che non si puo raggiungere una precisione infinita
nella misura contemporanea di q e p: infatti, tanto piu precisa é una
delle due misure, tanto pitt imprecisa é l'altra.

E corretto dire che I'apparizione di questo principio sulla scena
della fisica ha contribuito a rimettere profondamente in questione la
concezione della natura che aveva dominato le scienze per piu di tre
secoli. Ha significato la fine dell'illusione di poter raggiungere una co-
noscenza completa (e assolutamente certa) della natura, o quella che
si credeva dovesse essere una conoscenza completa, e quindi la fine
di una previsione sicura dell’'evoluzione futura di un sistema fisico.
Ricordiamo infatti che, secondo la meccanica classica, il calcolo del-
la traiettoria di una massa puntiforme richiede la conoscenza esatta
della sua posizione e del suo impulso all'istante iniziale, proprio quella
conoscenza che il principio di indeterminazione nega possa essere mai
raggiunta. Il determinismo di Laplace che garantiva di poter predire
avvenire dell'universo dalla conoscenza della posizione e della velocita
iniziali risulta incompatibile con il risultato di Heisenberg. Tuttavia,
gia Poincaré (nei suoi lavori matematici fondamentali sulla meccanica
celeste apparsi tra il 1892 e il 1899) mostro che il determinismo laplacia-
no andava rimesso in questione se si voleva avere una conoscenza piltt
estesa della natura e una comprensione profonda e pitt completa delle
sue proprieta, per esempio se si voleva capire il comportamento di un
sistema dinamico a tre corpi (Sole, Terra, Luna) e molti altri fenomeni
fisici in cui la complessita cresce con 'aumentare delle variabili e degli
effetti perturbativi.
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Per ritornare agli sviluppi della meccanica quantistica, € importan-
te sottolineare che per elaborare il suo teorema d’'impossibilita delle
teorie a variabili nascoste, Bell era partito dal riconoscimento dell'im-
portanza del carattere intrinsecamente non locale della teoria di David
Bohm: in essa la traiettoria di una particella localizzata in una regione
dello spazio puo dipendere istantaneamente da quel che accade in un
luogo da lei arbitrariamente lontano. La non localita che appare nella
trattazione causale di Bohm del paradosso EPR (Einstein, Podolsky e
Rosen) non e un difetto del modello teorico, ancora parziale, non es-
sendo relativistico, ma una caratteristica necessaria che ogni teoria a
variabili nascoste in grado di riprodurre perfettamente il formalismo
quantistico deve contenere. Il ragionamento di Bell dimostra che se si
effettuano due misure su due sistemi fisici (ad esempio una coppia di
particelle di spin % che si muovono liberamente in direzioni opposte
ad ognuna delle quali si associa un apparato che permette di misurare
le componenti dello spin) che corrispondono a due eventi spazialmen-
te separati, allora l'orientazione di uno degli apparati influenzera il ri-
sultato della misurazione eseguita dall’altro apparato. Risulta dunque
impossibile predire con certezza il risultato di una qualunque delle
componenti dello spin di una delle particelle da una misura della stes-
sa componente dell’altra particella, in quanto la funzione quantomec-
canica ¥ non determina il risultato di una osservazione individuale.
Lidea della non localita quantistica, che viola il cosiddetto principio di
localita (di Einstein), secondo il quale non é ragionevole pensare che un
dato fenomeno fisico possa avvenire indipendentemente dalla distan-
za dall’evento che lo ha causato, é che sia invece I'interazione tra i due
sistemi fisici che conta, perché grazie ad essa le due rappresentazioni
(ossia gli stati quantici delle due particelle) sono diventati aggrovigliati
(entangled).

La definizione di questo importante fenomeno fu data per la pri-
ma volta da Erwin Schrodinger nel 1935 come commento al paradosso
EPR:

Quando due sistemi, dei quali conosciamo i rispettivi stati, interagisco-
no temporaneamente mediante forze note, e quando dopo un periodo di in-
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fluenza mutua si separano nuovamente, essi non possono pil essere descritti
come prima, cioé attribuendo a ciascuno di essi un suo stato caratteristico.

Secondo Schrodinger, lentanglement ¢ il tratto caratteristico del-
la meccanica quantistica, il cui significato filosofico peculiare risiede
nell'idea di non localita delle interazioni tra le particelle; e, si potrebbe
aggiungere, d’indiscernibilita delle particelle che interagiscono; I'og-
getto della fisica non é pitt la particella isolata, ma l'interazione tra due
o pitt particelle e I'intreccio che cosi esse formano; il processo di inte-
razione modifica 'azione e lo stato delle particelle. Ad esempio, I'inte-
razione gravitazionale tra materia oscura e materia ordinaria modella
il cosmo in una ragnatela di galassie; gli scambi e le collisioni tra le
diverse forze quantistiche sembra modellare lo spazio-tempo alla scala
di Planck in una struttura ripiegata e annodata estremamente com-
plessa e dinamica.

Il principio d’indeterminazione (chiamato anche “relazioni d’in-
certezza”) stabilisce un limite fenomenologico allindipendenza del
sistema fisico dall'osservatore e dall’osservazione, le due cose vanno
distinte ma non sono piut separabili, quantomeno a livello microsco-
pico; infatti, si osserva un'intricazione quantistica tra il sistema fisico e
il sistema di osservazione e di misura impiegato dall'osservatore (dal
fisico). Chiariamo questo concetto con un esempio. Consideriamo due
sistemi fisici apparentemente simili, eccetto che uno &€ macroscopico e
l'altro & microscopico: un pianeta che si muove nel campo gravitazio-
nale del Sole e un elettrone che si muove nel campo coulombiano di un
protone (cioé un atomo di idrogeno). Il campo di forza che agisce nei
due casi ha la stessa dipendenza dalla distanza — pianeta-Sole o elet-
trone-protone —: in ambedue i casi la forza € inversamente proporzio-
nale al quadrato della distanza f= - 1/d*. La differenza tra i due casi sta
nel fatto che il sistema planetario (macroscopico) resta essenzialmente
indisturbato dall'osservazione, mentre 'atomo d’idrogeno (microsco-
pico) ¢ alterato o perturbato in maniera essenziale. Heisenberg ha in-
fatti dimostrato che per osservare 'orbita di un elettrone in un atomo
dovremmo usare una radiazione di frequenza, e quindi d'impulso, cosi
grande che l'elettrone verrebbe espulso dall’atomo. Il concetto di orbita
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di un elettrone in un atomo, diversamente dal concetto classico di or-
bita di un grave terrestre o di un corpo celeste, non ha dunque senso
perché ¢ inosservabile.

Ma questo significa per Heisenberg, e secondo la meccanica quan-
tistica, che ha senso solo cio che é osservabile tramite un apparato di
osservazione e di misura? Eppure noi sappiamo che ci sono molti fe-
nomeni, soprattutto alla scala subatomica di Planck e anche a quella
dell'intero Universo, che non sono ancora mai stati osservati ma che
tuttavia hanno un senso all'interno del modello o della teoria fisica in
cui sono stati pensati.

Un altro aspetto importante é che la struttura matematica del-
la fisica classica differisce da quella della meccanica quantistica.
Quest'ultima mostra il ruolo fondamentale che i concetti e le strut-
ture matematiche svolgono per la spiegazione del mondo fisico, e
quindi, si presume, nel comportamento reale dei fenomeni fisici. Tre
concetti matematici avranno un ruolo fondamentale per gli sviluppi
teorici prima della meccanica quantistica poi delle teorie dei campi
quantistici: quello di spazio d’operatori di Hilbert a un numero infi-
nito di dimensioni, quello di non commutativita e quello di gruppo
di Lie non abeliano (un gruppo non abeliano ¢ per definizione non
commutativo).

Dal punto di vista fenomenologico, un sistema fisico & descritto, sia
in meccanica classica che quantistica, dalla misura di grandezze fisi-
che ognuna delle quali corrisponde a un ben determinato strumento
di misura. Chiameremo «osservabile» 'oggetto matematico che rap-
presenta un particolare strumento di misura, e chiameremo «stato»
del sistema l'oggetto matematico che determina i valori medi degli
osservabili. Consideriamo il pitt semplice sistema fisico, cioé una par-
ticella che si muove lungo una retta in un potenziale dato, per esempio
un oscillatore. Questo sistema e descritto da due grandezze fisiche, la
posizione q e 'impulso p. Ogni altra quantita, 'energia per esempio, &
una grandezza di g e di p. Chiaramente gli osservabili q e p sono ogget-
ti matematici molto diversi a seconda che li si consideri in meccanica
classica o in meccanica quantistica. Secondo la meccanica classica, q
e p possono essere ambedue misurati con infinita precisone ad ogni
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istante, e sono cosi rappresentabili come funzioni continue e differen-
ziabili del tempo (o rispetto al tempo).

I valori di q e p a un dato istante determinano completamente lo
stato del sistema classico. La situazione in meccanica quantistica &
diversa. Infatti il principio di indeterminazione ci dice che q e p non
possono essere misurati contemporaneamente con infinita precisione
e che il prodotto delle loro incertezze soddisfa il principio d’'indeter-
minazione di Heisenberg. La dimostrazione data dal fisico tedesco di
questa relazione implica che la posizione ¢ e 'impulso p non possono
essere rappresentati da oggetti matematici il cui prodotto commuti,
cioé tali che il prodotto gp sia uguale a pq come avviene per i numeri
reali (invertendo l'ordine dei fattori il risultato non cambia) o per le
funzioni reali del tempo della meccanica classica. Questi oggetti mate-
matici richiedono che s’introduca una geometria e un'algebra diverse
al fine di poter caratterizzare le principali proprieta di una matematica
e fisica non commutative.

Limmaginazione matematica non € senza legami con il mondo fisi-
co eifenomeni naturali, anzi essa ha permesso in molti casi di scoprire
strutture matematiche nuove che si sono rivelate essere fondamentali
per la comprensione delle proprieta dei fenomeni fisici. E il caso del-
le simmetrie o gruppi trasformazione, ed ¢ il caso anche, come dice-
vamo prima, della non-commutativita che svolge un ruolo essenzia-
le in meccanica quantistica e nelle teorie quantistiche dei campi. Gia
nella seconda meta dell'Ottocento, Hamilton, Cayley e in particolare
Clifford avevano scoperto delle entita matematiche per le quali si puo
definire un prodotto non commutativo. Un esempio di tali entita sono
le trasformazioni di un gruppo come l'insieme delle rotazioni e delle
traslazioni nel piano, ma ce ne sono diversi altri, ad esempio le matrici,
per le quali si puo definire la somma: quest'ultima e commutativa, cioé
a+b=Db+a, mentre il prodotto non lo ¢, cioe ab e diverso da ba. Linsieme
di tali entita o strutture matematiche, opportunamente definite, viene
chiamata algebra non commutativa (o non abeliana).

Ritornando a Heisenberg, egli ha dimostrato che se si definisce il
prodotto delle p e delle ¢ con la relazione qp — pq =i h/21*, dove h e la
costante di Planck, e i = /-1, e se si definiscono opportunamente le
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incertezze Ap e Aq, si ottiene il famoso principio di indeterminazione
Ap . Aq =% h/2m. Naturalmente anche lo stato del sistema non puo es-
sere rappresentato dai valori di p e q poiché questi non possono essere
misurati simultaneamente. Lo stato potra esprimere solo la probabili-
ta che ¢ e p abbiano determinati valori. La probabilitd, nel senso di un
qualcosa per il quale non c’e nessuna certezza che accada ma solo una
certa possibilita, diviene un elemento essenziale della teoria fisica e,
in questo senso, il determinismo della meccanica classica perde la sua
validita. Tuttavia I'evoluzione temporale dello stato é retta, come ha
dimostrato E. Schrédinger, da un'equazione deterministica, la famosa
equazione di Schrodinger.

Si possono qui menzionare due tipi di problemi, che furono gia di-
scussi in passato soprattutto dai filosofi greci, sollevati nuovamente
dalla teoria dei quanti di Planck e la sua scoperta della natura discon-
tinua della materia, degli elettroni. Il primo di questi problemi con-
cerne l'essenza della materia. Per essere storicamente pill precisi, si
tratta dell’antico problema dei filosofi greci, ossia la ricerca di come
sia possibile ricondurre a principi semplici, a concetti intelligibili, la
varieta multiforme dei fenomeni che si verificano nel mondo materiale
(fisico). Laltro aspetto riguarda un problema epistemologico che si &
posto ripetutamente, in modo particolare da Kant in poi: ci si doman-
da fino a che punto sia possibile dare un significato oggettivo a cio che
osserviamo nella natura o, in genere, a cio che cade sotto i nostri sensi.
In altre parole, si tratta di determinare un fatto oggettivo che accade
indipendentemente dall'osservatore, partendo dai fenomeni osserva-
ti. Kant aveva parlato delle “cose in sé”, che il filosofo riteneva incono-
scibili in termini oggettivi e intersoggettivi. Nella teoria dei quanti il
problema riguardante il substrato oggettivo dei fenomeni e stato posto
in un modo nuovo e inaspettato.

La scoperta del quanto d’azione di Planck introduce un problema
fondamentale della fisica, quello dell'ordine di grandezza o della sca-
la alla quale si producono i fenomeni. La scoperta fatta da Planck del
quanto d’azione, che appare come costante caratteristica delle sue leg-
gi delle radiazioni, non rappresenta una proprieta di oggetti ma una
proprieta della natura, stabilisce una distinzione nella scala di gran-
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dezze che si osserva nella natura, e percio mostra nello stesso tempo
che, in ambienti in cui gli effetti risultano molto grandi di fronte al
quanto d’azione di Planck, i fenomeni naturali hanno un decorso di-
verso da quelli in cui gli effetti sono dell'ordine di grandezza dell’ato-
mo, dunque del quanto di Planck. Mentre le leggi della fisica classica,
per esempio della meccanica di Newton, dovevano in principio avere lo
stesso valore per tutti gli ordini di grandezze (il movimento della Luna
intorno alla Terra doveva verificarsi con le stesse leggi che la caduta di
una mela dall’albero o la deviazione di una particella alfa che vola via
rasentando il nucleo di un atomo), la legge delle radiazioni di Planck
mostrava per la prima volta che ci sono in natura distinzioni secondo
scale di grandezze. In altri termini, essa mostrava che fenomeni che
avvengono a scale spaziali ed anche temporali e di livelli di energia
diversi, non sono dello stesso tipo, anche se possono esserci delle re-
lazioni e delle strutture fondamentali di tipo matematico e fisico com-
muni o quantomeno simili a tutti questi fenomeni. Da qui l'idea che la
varieta e complessita della natura e del mondo fisico (per esempio le
diverse transizioni di fase della materia) possa essere retta da qualche
simmetria fondamentale (che inglobano altre simmetrie pitt parziali)
e da uno spazio topologico generale la cui struttura spiega l'esistenza
di strutture diverse.

Gia pochi anni dopo la scoperta di Planck fu compreso il significato
di una seconda “costante di misura”. La teoria della relativita speciale
di Einstein rese chiaro ai fisici che la velocita della luce non rappresen-
tala qualita di una materia speciale, I'“etere”, a cui doveva incombere la
propagazione della luce (come si era congetturato a suo tempo nell’e-
lettrodinamica), ma una qualita dello spazio e del tempo, dunque una
qualita affatto generale della natura indipendente dagli oggetti specia-
li che ne fanno parte. Percio anche la velocita della luce puo essere con-
siderata come una costante naturale, relativa alle scale di grandezze. I
nostri concetti intuitivi di spazio e di tempo possono essere applicati
a quei fenomeni in cui si presentano delle velocita piccole in confronto
alla velocita della luce. Inversamente i noti paradossi che si riferiscono
alla relativita si basano proprio sul fatto che fenomeni in cui interven-
gono velocita vicine a quella della luce non possono essere interpretati
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coi nostri concetti comuni di spazio e di tempo. Un esempio e il noto
paradosso degli orologi, ossia il fatto che, per un osservatore che si
sposti velocemente, il tempo scorre in apparenza pitt lentamente che
per un osservatore in quiete.

I lavori di Bohr, Kramers e Slaletr (1924), secondo i quali il campo
d’onde elettromagnetico, a cui sono dovuti in modo tanto evidente i
fenomeni d’interferenza e di diffrazione, determina solo la probabi-
lita che un atomo assorba o emetta per quanti (dunque per pacchetti
discreti di fotoni) l'energia luminosa nella regione dello spazio consi-
derata, contenevano l'idea d'importanza decisiva che le leggi naturali
non determinano il verificarsi di un avvenimento, ma la probabilita
che esso si verifichi; che inoltre questa probabilita deve essere messa
in relazione con un campo d’onde che ubbidisca a unequazione d’'onde
formulabile matematicamente.

Si tratta di una specie di stato intermedio di verita che sta in mez-
zo tra la verita massiccia della materia e la verita astratta dell'idea o
dellimmagine. Nella teoria moderna dei quanti questo concetto di
possibilitd assume una nuova veste: & formulato quantitativamente
come una probabilita e sottomesso a leggi naturali esprimibili mate-
maticamente. Le leggi naturali formulate in termini matematici non
determinano piu i fenomeni stessi ma la loro possibilita, la probabilita
che succeda qualche cosa.

Nella fisica moderna (quantistica) si ammette che la determinatezza
dei fenomeni esiste solo in quanto essi sono descritti con i concetti della
fisica classica. Lapplicazione di questi concetti ¢ limitata, d’altra parte,
dalle cosiddette relazioni d'indeterminazione; queste contengono del-
le restrizioni quantitative sui limiti posti all'applicazione dei concetti
classici.

Scrive Heisenberg:

Con cio si compiva un distacco decisivo della fisica classica e si ritornava
in ultima analisi a una concezione che aveva gia assunto una grande impor-
tanza nella filosofia di Aristotele. Le onde di propabilita di Bohr, Kramers,
Slater possono essere interpretate come una formulazione quantitativa del
concetto aristotelico di dinamica, di possibilita, chiamato anche piu tardi col
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nome latino pofentia. Lidea che quanto succede non sia determinato in modo
perentorio e definitivo, ma che gia la possibilita o tendenza al verificarsi di un
fatto possieda una specie di verita, ha nella filosofia di Aristotele una parte
decisiva.

8. Gruppi e teorie di gauge, invarianza locale e interazioni fisiche

Hermann Weyl sviluppo un approccio per lo studio della meccanica
quantistica interamente basato sul concetto matematico di gruppo.
La questione fondamentale che egli si pone in quegli anni (1930-35) &
di capire che la spiegazione delle proprieta fondamentali delle parti-
celle puo essere ricondotta allo studio pitt generale delle proprieta di
simmetria delle leggi quantistiche. Da un punto di vista matematico
cio comporta che si conosca la struttura di certe classi di gruppi di
Lie compatti e le loro rappresentazioni algebriche. Dal punto di vista
fisico, si tratta di capire se le proprieta delle particelle soddisfano le
simmetrie fondamentali che si conoscono, vale a dire destra/sinistra,
passato/futuro, carica (elettrica) positiva/carica (elettrica) negativa.

La generalizzazione non lineare delle equazioni di Maxwell alla
spiegazione delle proprieta delle particelle elementari ha richiesto
l'introduzione di diversi tipi di simmetria: (i) simmetrie esterne o spa-
zio-temporali, ovvero i gruppi di Lorentz, di Poincaré e il gruppo con-
forme — nel caso di massa a riposo nulla; (ii) le simmetrie interne, cioé
i gruppi SU(2) o SU(3) per certe proprieta delle particelle elementari;
(iii) le simmetrie di covarianza, ovvero la possibilita di combinare certe
proprieta quantiche delle particelle elementari con la gravitazione in
uno spazio curvo che possiede determinate proprieta topologiche.

Nell’elettrodinamica quantistica 'operazione di simmetria consi-
ste in un cambiamento di fase del campo dell’elettrone, cosicché una
di queste fasi si trova associata a urn'interazione con il campo elettro-
magnetico. Possiamo cosi immaginare un elettrone sottomesso a due
cambiamenti di fase consecutivi: l'emissione di un fotone, poi il suo
assorbimento. Si verifica che la sequenza secondo la quale si produ-
cono tali cambiamenti di fase sono invertiti, per cui un fotone viene
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prima assorbito, poi emesso: il risultato finale sara quindi lo stesso.
Ne risulta che una serie infinita di cambiamenti di fase puo essere ef-
fettuata e il risultato finale sara semplicemente la somma algebrica di
tutti i cambiamenti indipendentemente dall’ordine in cui la sequenza
é stata effettuata. Invece, nella teoria di Yang-Mills (su cui ritorneremo
tra poco), dove 'operazione di simmetria € una rotazione locale dell'i-
sospin, il risultato di pitt operazioni puo essere diverso. Supponiamo
un adrone (una particella subatomica composta da quark e antiquark
legati dalla forza nucleare forte) soggetto a una trasformazione, B,
dopo una serie di trasformazioni (cioe un cambiamento di simmetria),
la particella avra un'orientazione corrispondente a quella di un proto-
ne (una particella subatomica di carica elettrica positiva che insieme
al neutrone é un costituente del nucleo atomico). Supponiamo ora di
applicare la stessa trasformazione all'adrone ma secondo un ordine in-
verso, cioé prima B e poi A. In generale, lo stato finale in cui si trovera
la particella non sara lo stesso di quello precedente: la nuova particella
potra essere un neutrino’ invece di un protone. Il risultato delle due
trasformazioni dipende dunque dall’ordine nel quale esse vanno ese-
guite.

Il concetto di simmetria svolge un ruolo fondamentale nelle teorie
di gauge in fisica teorica. Le nuove teorie di gauge furono elaborate
da Yang e Mills negli anni 50 del secolo scorso (il primo lavoro impor-
tante e del 1954), al seguito dei primi tentativi fatti da Hermann Weyl
per introdurre una geometria locale pitt generale rispetto a quella ri-
emanniana capace di inglobare in un modello esplicativo unitario al-
cune proprieta fondamentali dei campi quantistici. La teoria di Yang
e Mills offre un modello geometrico per spiegare le interazioni forti e
per comprenderne gli effetti quantistici. La sua principale caratteri-
stica ¢ di ammettere come gruppo di invarianza un gruppo di Lie non
abeliano, che é il piu “semplice” dei gruppi non commutativi. Questa

7 Il neutrino & una particella priva di carica elettrica e con una massa estremamen-
te piccola, che non si & ancora riusciti a misurare. I neutrini interagiscono molto
raramente con la materia; possono infatti attraversare praticamente indisturbati
enormi spessori di materia.
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proprieta matematica del gruppo di simmetrie conferisce alla teoria
una struttura molto ricca e permette di trovare delle equazioni di cam-
po pitt generali di quelle di Maxwell. Gia questo mostra a sufficienza il
ruolo fondamentale che hanno le simmetrie geometriche nella com-
prensione dei problemi di fisica studiati dalle teorie di gauge.

Conviene ricordare che gia nella teoria proposta da Weyl nel 1929
appare, in piu delle variabili di posizione nello spazio-tempo, un pa-
rametro di spazio interno sul quale il gruppo di fase agisce. Il campo
che s’identifica alla funzione d’'onda della particella pué dunque essere
visto come se associassimo a ogni punto dello spazio-tempo un punto
dello spazio di configurazione interna, che nel caso dell’elettromagne-
tismo € un angolo. Una gauge esige allora che si combinino le coordi-
nate dello spazio-tempo con i parametri dello spazio fisico interno. La
teoria di Weyl soddisfa un principio “d’invarianza locale”; in altre paro-
le, le equazioni di campo restano invariate quando si applica una serie
di trasformazioni o di simmetrie al sistema fisico. Gli sviluppi delle
teorie di gauge mostrano chiaramente che le proprieta fondamentali
delle particelle e delle loro interazioni dipendono essenzialmente dalla
conoscenza di alcuni gruppi di simmetria. In affetti, I'idea pitt impor-
tante delle teorie di gauge e quelle di simmetria: vale a dire I'idea che
un “oggetto” o una “quantitd” fisica, alla scala quantica, & simmetrico
se possiamo applicargli una trasformazione che conserva la sua strut-
tura. Per esempio, possiamo applicare una rotazione di 60° a un fiocco
di neve senza modificare la sua forma. Si puo anche farlo ruotare di un
angolo multiplo di 60° o applicargli pitt trasformazioni successive e il
risultato sara lo stesso. Una situazione che si incontra di frequente &
che piu trasformazioni differenti (per esempio rotazioni e traslazioni)
lasciano un oggetto invariato: si dira allora che I'insieme di queste tra-
sformazioni possiede una struttura matematica di gruppo e forma il
gruppo di simmetrie dell'oggetto.

Sono soprattutto i gruppi continui, come i gruppi di Lie, che ap-
paiono nella teoria quantistica dei campi. Le trasformazioni di questi
gruppi dipendono da uno o pitt parametri che variano in modo conti-
nuo: € il caso, per esempio, del gruppo di rotazioni di uno spazio a tre
dimensioni, i cui parametri sono i tre angoli di Eulero. La struttura
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matematica dei gruppi di Lie e molto ricca ed e per questo che hanno
un ruolo importante in fisica: infatti, ad ogni gruppo continuo di sim-
metrie corrisponde una legge di conservazione di una quantita fisica.
Questa proprieta fondamentale del mondo fisico é I'essenza del teore-
ma di Emmy Nother. La conservazione dell’energia corrisponde all'in-
varianza della teoria rispetto alle rotazioni nello spazio. La fisica e la
geometria si trovano ad essere profondamente legate, a far parte dello
stesso processo di trasformazione della materia e di organizzazione
del mondo fisico a diverse scale e livelli.

Le leggi di conservazione hanno un'importanza fondamentale nello
studio dei sistemi fisici. Diremo che una teoria (che é innanzitutto un
modello di un sistema fisico) presenta una simmetria globale se rimane
invariata rispetto all'azione delle trasformazioni di un gruppo, a con-
dizione che la stessa trasformazione sia simultaneamente applicata a
tutti i punti dello spazio. Diremo, invece, che la simmetria & locale se la
trasformazione agisce diversamente in ogni singolo punto. Poiché si
suppone generalmente che lo spazio sia continuo, € piuttosto naturale
che siano i gruppi continui, o gruppi di Lie, a svolgere un ruolo prepon-
derante nelle teorie caratterizzate da una simmetria locale. Diversa-
mente da cio che si sarebbe portati a pensare, 'esigenza di soddisfare
una simmetria locale & molto pit vincolante rispetto alla simmetria
globale: mentre quest'ultima ¢, per cosi dire, autosufficiente, nel caso
della simmetrialocale & necessario aggiungere un elemento alla teoria,
ovvero un campo, ed & per questo che si richiede alla teoria di possede-
re una simmetria locale.

Per meglio arrivare a riconoscere la natura intrinseca delle simme-
trie nella teoria quantistica dei campi, che come abbiamo visto pos-
sono essere sia di natura locale sia di natura globale, occorre avere
un'idea sufficientemente chiara delle proprieta topologiche, globali e
locali, dello spazio (o della varieta) in cui si suppone “esistano” e agi-
scano le particelle alla scala di Planck. In altre parole, la conoscenza
della struttura topologica dello spazio fisico potrebbe permettere non
solo di identificare l'esistenza di nuove simmetrie in pit di quelle che
gia si conoscono, ma anche la presenza di nuovi campi fisici prodotti
dall'azione di queste altre simmetrie.
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Daltra parte, come abbiamo rimarcato sopra, la simmetria locale
di certe teorie fisiche, come ad esempio l'elettrodinamica quantistica,
puo essere ripristinata aggiungendo un nuovo campo alla teoria, cos,
ad esempio, lelettrodinamica quantistica risulta dalla combinazione
del campo materiale di elettroni con il campo elettromagnetico; men-
tre, invece, nella relativita generale questo campo é naturalmente quel-
lo della gravita.

Lelettromagnetismo di Maxwelll e la relativita generale di Einstein
ammettono entrambe una simmetria di gauge locale. In quest’ultima,
la simmetria non € associata a un campo che si propaga attraverso lo
spazio, ma alla struttura dello spazio-tempo stesso, vale a dire alla sua
geometria, e in realta (questo lo si & capito piu tardi) anche alla sua
topologia, la quale puo generare effetti fisici anche in assenza di campi
gravitazionali forti. Diversamente dalle due teorie appena menziona-
te, la prima teoria di gauge per le interazioni forti, proposta da Yang e
Mills nel 1954, ammetteva una simmetria globale. Il problema che su-
bito allora si pose era di capire quali conseguenze potessero sorgere se
si cambiava la simmetria globale in una simmetria locale. Quello che
succede in questo caso, come in altri casi, e che I'invarianza locale si
conserva solo se si aggiungono nuovi campi alla teoria. Pitt precisa-
mente, quando la rotazione dell'isospin avviene diversamente in ogni
singolo punto (cioe non ¢ la stessa per I'intero spazio) le leggi della fisi-
ca rimangono invariate se si aggiungono nove nuovi campi.

Una delle pitt importanti caratteristiche della fisica contemporanea
e di aver geometrizzato le forze. I primi tentativi risalgono a Riemann,
Clifford e Poincaré®. In realta, essi fanno parte di un programma pitt
generale di geometrizzazione della matematica e della fisica portato

8 Per una ricostruzione concettuale degli sviluppi di tale programma, cfr. i nostri
seguenti lavori: LuciaNo Bol, Le probleme mathématique de l'espace. Une quéte de
Pintelligible, prefazione di René Thom, Heidelberg-Berlin, Springer-Verlag, 1995;
LucIiANO Bol, Lespace, concept abstrait et/ou physique; la géométrie entre formalisation
mathématique et étude de la nature, in Luciano Boi, Dominique Flament, Jean.Michel
Salanskis (eds.), 1830-1930: A Century of Geometry, History, Mathematics and Epistemo-
logy, History and Mathematics, Lecture Notes in «Physics», vol. 402, Heidelberg,
Springer-Verlag, 1992, pp. 63-90.
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avanti da Einstein, E. Cartan e Weyl nella prima meta del secolo scor-
so. Seguendo approcci diversi, tutti e tre hanno mostrato che potevano
darsi i principi matematici di una teoria pilt generale rispetto a quella
riemanniana atta a spiegare i fenomeni fisici come tipi di eventi defi-
niti in un determinato modello di spazio-tempo.

Dopo i lavori fondamentali di Riemann, Clifford e Poincaré in ma-
tematica e in fisica, la relativita generale ha costituito la prima realiz-
zazione importante di questo programma di geometrizzazione. La sua
proprieta matematica fondamentale ¢ di ammettere, per i fenomeni
fisici alla scala dell'universo, un gruppo di simmetria rispetto al quale le
loro leggi si conservano invariate. Si tratta del gruppo di diffeomorfismi
che lascia invariata la forma quadratica, cioé la metrica, di una varieta
pseudoriemanniana di dimensione 4. Pit precisamente, si puo effet-
tuare una trasformazione qualsiasi del sistema di coordinate nell'intor-
no di un punto dato in questo stesso spazio-tempo senza che le leggi
fisiche ne risultino modificate. Possiamo affermare, in un certo senso,
che la scelta delle coordinate & arbitraria (o che & una convenzione teo-
rica). Ma la struttura geometrica dello spazio-tempo, caratterizzato in
questo caso da una metrica pseudoriemanniana di tipo iperbolico, non
e affatto arbitraria. Lelemento forse pit significativo della relativita ge-
nerale e di aver fornito una descrizione unitaria dello spazio, del tempo
e della gravitazione. Secondo questo modello, lo spazio-tempo é una
varieta di dim. 4, M, con una metrica g di signatura (3, 1), la cui connes-
sione rappresenta la forza di gravita. In altre parole, la gravita & “portata”
da un campo connessione simmetrico: da un oggetto dunque di natura
essenzialmente geometrica. In effetti Einstein era partito dallipotesi
che ogni fenomeno fisico poteva essere associato a un tensore T, che
chiama tensore d’energia, il quale verifica le due equazioni

W= T*
AT =o.

Cio ha permesso di stabilire I'identita tra il tensore di energia e il ten-

sore metrico (0 di Riemann); quest'ultimo puo essere definito secondo
un principio variazionale e nellequazione appare come la grandezza
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coniugata della connessione riemanniana (M, g). La legge fondamentale
della relativita generale si esprime attraverso l'equazione di Einstein

R, -129,R=81T,

dove R, e R sono, rispettivamente, la curvatura di Ricci e la curvatura
scalare di g, e T, € il tensore d’energia della materia. In assenza di
materia, 'equazione di Einstein per la varieta spazio-tempo si scrive

R, =0.
Certi sviluppi recenti della fisica teorica mostrano che la struttu-
ra geometrica dello spazio-tempo alla scala quantica potrebbe essere
allorigine non solo del comportamento cinematico, ma anche di quello
dinamico dei fenomeni fisici che si generano in esso. Sappiamo che cio
e vero per il campo gravitazionale, il quale secondo la relativita generale
¢ determinato dalla struttura geometrica dello spazio-tempo e in par-
ticolare dalla sua curvatura, ma, in pitt, anche gli altri campi di materia
sembrano essere suscettibili di un'interpretazione geometrica. Ed é in
cio, infatti, che risiede il significato essenziale delle teorie di gauge. La
teoria delle corde (e supercorde) sviluppa la stessa idea fondamenta-
le arricchendola di nuove strutture matematiche, poiché essa cerca di
mostrare che i diversi campi di materia hanno verosimilmente urn'ori-
gine geometrica comune, o che si costituiscono a partire dalla struttura
geometrica e topologica stessa come manifestazioni delle sue fluttua-
zioni e dei suoi cambiamenti. Cosicché, secondo la teoria delle corde i
campi e le interazioni tra le diverse forme di materia alla scala di Planck
e a bassissime energie emergerebbero dalla geometria (e dalla topolo-
gia) nello stesso modo in cui la gravita risulta dalla geometria (metrica e
curvatura) dello spazio-tempo a scala macroscopica dell'universo.

Riassunto Appoggiandosi su idee e risultati ottenuti da diversi autori nei secoli prece-
denti e in particolare sulla rivoluzione astronomica esposta da Nicolo Copernico nel De
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revolutionibus orbium ceelestium (1543), Galileo riusci a dare una formulazione della legge
matematica della caduta dei gravi, fece alcune scoperte astronomiche, enuncio il “principio
di relativitd”, i principi di inerzia e di scomposizione delle forze, e fu un convinto asserto-
re dellimportanza e della validita del sistema copernicano, tante che molti dei suoi sforzi
come scienziato furono rivolti a farne riconoscere la novita radicale nella concezione dell'u-
niverso. Il “principio di relativita galileiana” sara sviluppato nei secoli successivi e diventera
uno dei principi fondamentali dell'intera fisica grazie soprattutto alle scoperte fatte da Ein-
stein con la sua teoria della relativita ristretta del 1905 e della teoria della relativita generale
del 1915-16, quest’ultima basata sul principio di equivalenza tra massa inerziale e massa
gravitazionale; in altre parole, il loro rapporto € costante e uguale per tutti i corpi. Dopo le
osservazioni e scoperte importanti fatte da Galilei tra il 1609 (il corto trattato sullastrono-
mia Sidereus Nuncius appare nel 1610 e Il Saggiatore viene pubblicato nel 1623) e il 1632 (anno
della pubblicazione del Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano),
riguardanti le leggi del moto dei corpi terrestri e celesti, un progresso decisivo fu ottenuto
da Isaac Newton, che a partire dal 1666 riusci ad unificare in una teoria coerente i diversi
risultati di Keplero sulle cause dei moti planetari e di Cartesio sul peso dei corpi sulla Terra,
dando alle leggi dinamiche dei suoi predecessori una sistemazione teorica decisamente
pitt intelligibile. Risolto il problema dinamico del moto di un corpo grazie al modello ge-
ometrico introdotto da Keplero, Newton unifico concettualmente il principio cartesiano
del moto rettilineo uniforme di una particella materiale in vacuo, la legge galileiana della
composizione delle forze e le tre leggi di Keplero circa i moti planetari, pervenendo cosi alla
formulazione matematica della legge della gravitazione universale (nella sua grande opera
Philosophice naturalis principia mathematica, del 1680). Il concetto di simmetria ha avuto un
ruolo capitale nel cammino tortuoso e travagliato della scienza che ha portato tra meta Ot-
tocento e inizi Novecento ad una conoscenza approfondita delle regolarita fondamentali
del mondo fisico, di cui pero gia Keplero aveva avuto unintuizione profonda. In particola-
re, si € via via capito il nesso fondamentale tra simmetrie geometriche, invarianze di certe
grandezze e leggi fisiche. lidea di simmetria, matematicamente espressa tramite il concet-
todigruppo di trasformazioni (grazie ai lavori di Klein, Lie, Weyl e E. Cartan), che puo essere
continuo (infinito) o discreto (finito), ha aperto la strada a nuove scoperte fondamentali
nella fisica del XX secolo, in particolare le due teorie della relativita, ristretta e generale, e
la meccanica quantistica, e permesso la formulazione rigorosa dell'elettrodinamica quanti-
stica (teoria che unifica materia e radiazione) e delle teorie di gauge non abeliane basate su
un gruppo di simmetrie locali le cui trasformazioni sono non-commutative. Questi gruppi
di simmetrie possono essere definiti e agire dinamicamente su certi spazi topologici di cui
le strutture fondamentali sono invariati per deformazione.

Abstract Relying upon ideas and results obtained by different scientists during the
previous centuries and notably on the astronomical revolution presented by Copernicus
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in De revolutionibus orbium ccelestium (1543), Galileo Galilei succeeded in formulating the
mathematical law of falling bodies, made some astronomical discoveries, and states
the “principle of relativity”, the principle of inertia and the principle of decomposition of
forces, and also he was a convinced advocate of the importance and validity of the Co-
pernican system, so much so that many of his much efforts as a scientist were directed
atrecognizing the radical change in the vision of the universe it produced. The “principle
of galilean relativity” will be developed in the following centuries and will became one
of the most fundamental principles of physics thanks especially to Einstein’s discovery of
special relativity (1905) and general relativity (1915-16), the last based on the principle of
equivalence between inertial mass and gravitational mass. After the important obser-
vations and discoveries made by Galilei between 1609 (the short astronomical treatise
Sidereus Nuncius appeared in 1610 and Il Saggiatore was published in 1623) and 1632 (with
the publication of the Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano)
concerning the laws of the movement of terrestrial and celestial bodies, a major prog-
resswas obtained by Isaac Newton, which around the year1666 succeeded in unifyingin
a coherent theory the different results by Kepler on the causes of planetary movements
and by Descartes on the weight of the bodies on the Earth; and therefore he was able
to give to the dynamical laws of his predecessors a more intelligible theoretical setting.
With the resolution of the dynamical problem of the movement of a body thanks to the
geometrical model introduced by Kepler, Newton conceptually unify the cartesian prin-
ciple of rectilinear uniform movement of a material particle in vacuo with the Calilean
law of the composition of forces and the three laws of Kepler on the planetary move-
ments, obtaining thus the mathematical formulation of the law of universal gravitation.
Furthermore, it has been stressed that the concept of symmetry played a key role in the
tortuous path, which led, between the second half of the XIX century and the begin-
ning of the XX century, to a deep knowledge of fundamental regularities of the physical
world, although already Kepler has had a profound intuition of this fact. In particular,
one has gradually understood the fundamental link relating the geometrical symme-
tries to the invariance of certain quantities and the physical laws. The idea of symmetry,
mathematically expressed through the concept of a group of transformations (due to
the works of Klein, Lie, Weyl and E. Cartan), which can be either continuous (i.e. infinite)
or discrete (i.e. finite) paved the way to new fundamental discoveries in the XX century
physics, particularly to the two theories of Einstein’s relativity, special and general, and
quantum mechanics, and allowed for the rigorous formulation of the quantum electro-
dynamics (a theory which unify matter and radiation) and of non-Abelian gauge theo-
ries, resting on groups of local symmetries whose transformations are non-commuta-
tive. These groups of symmetries can be well defined and they act dynamically upon
certain topological spaces whose fundamental structures are invariant by deformation.
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