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1. Osservazioni introduttive; il principio di relatività da Galileo a Einstein

In questo testo parleremo brevemente anzitutto del pensiero di Galileo 
Galilei in riferimento ad alcune sue idee e più in generale alla sua con-
cezione della fisica, della matematica e dei loro rapporti, idee e concet-
ti che peraltro variano in modo significativo nei suoi scritti; in seguito 
parleremo più diffusamente degli sviluppi successivi che questa con-
cezione ha avuto, in particolare nei secoli XIX e XX. 

Per la maggior parte degli storici e filosofi della scienza1, l’imma-
gine della natura costruita dalla nuova scienza dei secoli XVII e XVIII 
presenta alcune caratteristiche essenziali, che possono essere enun-
ciate sinteticamente come segue: (i) la “rivoluzione scientifica” del 600 
tentò di smantellare le basi della fisica qualitativa, che si devono perlo-
più ad Aristotele ma che furono più tardi riprese da autori come Duns 
Scoto (1265-1308), Nicola Oresme (1325-1382) e Nicola Cusano (1401-
1464), e costruì un universo corpuscolare-meccanico; (ii) essa sostituì 
all’apriorismo (cioè ai principi teorici e/o metafisici dati a priori), al 
principio di autorità e al vacuo verbalismo scolastico la lettura diret-
ta, ovverosia l’osservazione e l’indagine delle cause dei fenomeni, del 
“libro della natura”; (iii) essa affermò che l’esperimento doveva essere 
fondato su ipotesi teoriche e fattuali, sulla registrazione attenta dei fe-

1	 Si vedano, ad esempio: Paolo Rossi, La scienza e la filosofia dei moderni, Torino, Bol-
lati Boringhieri, 1989; Paolo Casini, La natura, Milano, Mondadori, 1979. 
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nomeni e del loro ripetersi, la misurazione e il calcolo. Questi assunti, 
nelle intenzioni dei maggiori scienziati del ‘600, servivano a liquidare 
i pregiudizi e le categorie mentali che avevano sorretto per quindici 
secoli la scienza peripatetica insegnata da Aristotele e dai suoi allievi.

Dopo Copernico e Keplero, Galileo è quasi unanimemente consi-
derato uno degli artefici della rivoluzione della scienza moderna che, 
secondo la maggior parte dei commentatori, avrebbe demolito la con-
cezione della natura e della conoscenza che si era imposta per circa 
quindi secoli nelle accademie e nelle università, e le cui fonti di ispi-
razione erano essenzialmente due, entrambe originatesi nell’antica 
Grecia: quella platonica e quella aristotelica. La prima attribuiva agli 
enti matematici, in particolare a quelli geometrici, una natura ideale, 
cioè “esistenti” in un mondo di idee e proprietà perfette e incorrutti-
bili, ai quali gli oggetti fisici si conformavano solo in modo parziale 
e approssimativo; e quella aristotelica, che sebbene riconoscesse alla 
matematica un ruolo importante nella conoscenza della natura, sotto-
lineava il fatto che tra i concetti matematici e i fenomeni naturali non 
esiste solo una relazione ideale o astratta, logico-deduttiva, ma una 
reale interazione che può avere una certa incidenza causale e pertanto 
produrre effetti fisici. Un esempio importante di questa interazione è 
la teoria elaborata da Aristotele, che studia i rapporti tra forma e so-
stanza e cerca di mostrare che la (o il tipo di) forma, dove per “forma” si 
intende anche il bordo di un oggetto o di un corpo (oggi parliamo della 
“forma globale” di una varietà o di uno spazio e distinguiamo gli spazi 
che hanno un bordo da quelli che ne sono privi: ad esempio, il piano e 
la sfera sono varietà bidimensionali senza bordo, mentre il disco con-
tiene un bordo e il cilindro due), può influenzare le qualità e il compor-
tamento della sostanza – ossia di un determinato tipo di materia –, e, 
reciprocamente, il tipo di materia – cioè il suo stato e le sue proprietà 
– consente determinate variazioni della forma iniziale di un oggetto o 
di un corpo. Diversi autori, moderni e contemporanei, hanno ripreso 
la teoria di Aristotele migliorandola e riformulandola: basti pensare 
alle idee di Leibniz sulle proprietà dinamiche dei corpi o a quelle di 
Riemann sui rapporti tra le configurazioni geometriche degli oggetti e 
le loro proprietà fisiche (per esempio nei fluidi). 
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La parola “quasi” utilizzata all’inizio del precedente paragrafo sta a 
indicare il fatto che alcuni storici e filosofi della scienza hanno critica-
to una tale ricostruzione ritenendola troppo semplicistica e per molti 
aspetti infondata. Citiamo qui la ricostruzione storiografica accurata, 
fatta a partire dalle fonti e dai testi originali, condotta da Lucio Rus-
so in particolare nella sua importante opera La rivoluzione dimenticata 
(prima ed., 1996; nuova ed.: Feltrinelli, 2021). Russo critica in modo 
sostanziale la ricostruzione storiografica, prevalente tra gli storici e i 
filosofi della scienza, della nascita e dello sviluppo della scienza mo-
derna, che attribuisce essenzialmente a Galileo e Newton. Nella sua 
meticolosa indagine Russo mostra che, in realtà, le sue origini risal-
gono a più di 2000 anni prima, cioè al periodo ellenistico e alle im-
portanti scoperte fatte tra il IV e II secolo a.C. da matematici e fisici 
come Euclide, Archimede, Eratostene, Aristarco di Samo e tanti altri. 
Fu grazie alle loro scoperte e teorie che nacque il metodo scientifico. 
Il ruolo svolto dal loro pensiero scientifico, fondato spesso su concetti 
filosofici e metafisici esposti con sorprendente rigore e immaginazio-
ne, in particolare nei campi della matematica, dell’astronomia e della 
fisica, della biologia e della medicina, è stato essenziale non solo per 
l’affermazione della “civiltà classica”, ma anche perché ha fornito le 
basi teoriche e sperimentali a molti degli sviluppi successivi ad opera 
degli scienziati e filosofi dei secoli XVI e XVII, in particolare grazie 
alle scoperte di Copernico, Bruno, Keplero, Galileo, Descartes, Newton 
e Leibniz. 

Appoggiandosi su idee e risultati ottenuti da diversi autori nei se-
coli precedenti e in particolare sulla rivoluzione astronomica esposta 
da Niccolò Copernico nel De revolutionibus orbium cœlestium (opera pub-
blicata in latino nel 1543), Galileo riuscì a dare una alquanto tormen-
tata formulazione della legge matematica della caduta dei gravi, fece 
alcune scoperte astronomiche, enunciò il “principio di relatività”, i 
principi di inerzia e di scomposizione delle forze, e fu un convinto as-
sertore dell’importanza e della validità del sistema copernicano, tant’è 
che molti dei suoi sforzi come scienziato furono rivolti a farne rico-
noscere il carattere di svolta radicale nella concezione dell’universo. Il 
principio di relatività sarà sviluppato nei secoli successivi e diventerà 
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uno dei principi fondamentali dell’intera fisica grazie soprattutto alle 
scoperte fatte da Einstein con la sua teoria della relatività ristretta del 
1905. 

Il principio di relatività lo troviamo enunciato in vari modi e anche 
in vari contesti empirici ma prevalentemente mediante “esperienze di 
pensiero” (Gedankenexperimente). Il principio di relatività galileiano affer-
ma che nessuna esperienza eseguita all’interno di un sistema di riferi-
mento può rivelarne un moto traslatorio rettilineo uniforme, rispetto 
a un riferimento fisso o, più genericamente, inerziale. In altri termini, 
qualsiasi esperienza od osservazione eseguita all’interno di un corpo è 
atta a rivelarne un motto rettilineo soltanto a patto che questo non sia 
un moto traslatorio rettilineo uniforme. Nella formulazione galileiana 
del principio, l’impossibilità appena espressa è limitata alle esperienze 
meccaniche. 

Einstein affermerà che tale impossibilità sussiste per esperienze 
di qualsiasi natura, e tale asserzione costituisce, come vedremo più 
avanti, uno dei postulati fondamentali della teoria della relatività ri-
stretta (o speciale) del 1905. Nella relatività generale (1915-16), le due 
fondamentali proprietà della materia che sono la gravitazione e l’iner-
zia venivano ad essere ricondotte da Einstein a uno stesso principio, 
potendosi considerare ambedue come dovute alle proprietà geometri-
che della spazio-tempo o, fisicamente, alla distribuzione, variabile nel 
tempo, della materia e dell’energia. 

Nella relatività ristretta si parla di principio di equivalenza tra mas-
sa ed energia: considerando che le due “quantità” fisiche si uguaglia-
no, Einstein ha fatto compiere alla fisica un profondo cambiamento 
concettuale. Il principio di equivalenza di Einstein (relatività generale) 
ci dice che, dal punto di vista della meccanica classica, un sistema di 
riferimento situato in un campo gravitazionale è meccanicamente 
equivalente a un sistema di riferimento uniformemente accelerato. Il 
fatto che i due sistemi siano fisicamente equivalenti significa che tutti 
i processi fisici si svolgono nei due sistemi seguendo le stesse leggi. 
Alla base del principio di equivalenza c’è il fatto fondamentale che il 
campo gravitazionale imprime localmente a tutti i corpi la stessa ac-
celerazione, data l’equivalenza tra massa inerziale e massa gravitazio-
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nale, e questo si spiega con il fatto che la massa inerziale e la massa 
gravitazionale sono equivalenti. 

Va comunque detto che già alcuni teologi, filosofi e scienziati tardo 
medievali o “pre-moderni”, come Duns Scoto, Nicola Oresme e Nicola 
Cusano, studiarono quei fenomeni ed elaborarono idee e teorie di un 
profondo acume concettuale, alle quali, va aggiunto, Galileo non fece 
alcun preciso riferimento, anche se molto probabilmente egli era a co-
noscenza delle idee di Oresme poiché erano insegnate all’Università di 
Padova dove insegnava lo scienziato pisano. Il caso di Oresme, filosofo 
della Scolastica e tra i più originali pensatori del XIV secolo, è partico-
larmente interessante. Egli fu autore di un “Trattato sulla configura-
zione delle qualità e del movimento” (Tractatus de configurationibus qua-
litatum et motuum, 1356) in cui espone il suo metodo per rappresentare 
graficamente (tramite diagrammi) le variazioni di una grandezza, che 
chiama qualità, in funzione di un’altra. In altre parole, egli introduce 
il concetto matematico di relazione funzionale, cioè di funzione, tra due 
variabili che variano una in funzione dell’altra; concetto che neanche 
Galileo riuscirà a formulare in maniera generale, e infatti bisognerà 
aspettare i lavori di Newton e Leibniz sull’analisi infinitesimale per 
trovarne un enunciato preciso. 

Oresme considera per esempio un corpo nel quale il calore non è 
omogeneo, ma varia secondo il luogo e la misura. Per rappresentare 
le variazioni del calore all’interno del corpo, egli immagina una retta 
tracciata sul corpo. Chiama longitudino (che corrisponde al nostro asse 
orizzontale delle ascisse) la distanza che separa un punto qualsiasi della 
retta da un ‘punto origine’ fissato arbitrariamente. In ciascun punto di 
questa retta egli traccia una perpendicolare la cui altezza, che chiama 
latitudino (l’equivalente del nostro asse verticale delle ordinate), è pro-
porzionale all’intensità del calore nel punto corrispondente del corpo. 
Ottiene così una figura geometrica il cui studio non solo facilita l’ana-
lisi delle variazioni del calore, ma in più ha il pregio di evidenziare il 
fatto importante che i cambiamenti nel diagramma geometrico sono 
tutt’uno con le variazioni dello stato fisico del corpo materiale. Non ci 
troviamo quindi di fronte a una mera rappresentazione grafica del va-
riare di due quantità messe in relazione tra di loro, ma a un diagram-
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ma intrinsecamente spaziale le cui variazioni riflettono cambiamenti 
che avvengono nella qualità (nel caso specifico si tratta del calore) o 
nelle qualità dei corpi. 

La proprietà di questa qualità – scrive Oresme – saranno esaminate più 
chiaramente e più facilmente quando qualcosa che le è simile è disegnato su 
una figura piana, e questa cosa, resa chiara cioè visibile, viene colta rapida-
mente e perfettamente dall’immaginazione […] perché l’immaginazione della 
figura aiuta grandemente la conoscenza delle cose stesse. 

Nel passo finale della citazione Oresme sottolinea un punto im-
portante, ossia l’importanza dell’immaginazione nel processo della 
conoscenza, e più precisamente ancora l’importanza delle immagini 
mentali per penetrare nelle proprietà stesse delle cose (dei corpi). Co-
sicché le figure, i grafi o i diagrammi non sono un mero strumento uti-
le per descrivere le variazioni di quantità ma dei modelli atti a spiegare 
i cambiamenti qualitativi dei corpi2. Egli intraprende poi, infatti, uno 
studio matematico delle figure piane ottenute grazie alle rappresen-
tazioni grafiche della qualità. Fa loro subire delle trasformazioni geo-
metriche semplici cercandovi delle proprietà invarianti, il che lo porta 
a una classificazione delle curve. Alcuni storici vedono in Oresme un 
precursore di Cartesio poiché di fatto avrebbe posto le basi della ge-
ometria analitica. Il nostro autore non si ferma tuttavia a uno studio 
completamente astratto, tanto è vero che applica la sua idea di configu-
razione allo studio di diversi fenomeni, in particolare in biologia: egli 
afferma, per esempio, che il calore naturale di un leone si comporta 
in modo diverso da quello di un asino o di un bue. E dà la seguente 
spiegazione: «Esso [il calore] gli fornisce una potenza più grande, non 
solamente perché è più intenso, ma anche perché la sua rappresenta-
zione grafica è diversa». Così, sembra esserci un nesso tra la proprietà 
fisica e la variazione spaziale, nesso che contribuisce a produrre dei 
cambiamenti qualitativi nei corpi.

2	 Su questo ed altri aspetti del pensiero matematico di Oresme, cfr. le analisi inte-
ressanti di Gilles Châtelet, Les enjeux du mobile, Parigi, Éditions du Seuil, 1993. 
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La parte forse più rilevante dell’opera di Oresme è quella in cui l’au-
tore applica la sua “dottrina della configurazione” a uno studio delle 
proprietà del movimento. Qui Oresme dà tutta la misura del suo genio. 
Si tratta della parte della sua opera che esercitò un’influenza duratura 
sui suoi contemporanei e che senza dubbio ha lasciato una traccia im-
portante nella storia della scienza del moto. Per descrivere e studiare 
un movimento rettilineo, Oresme ha l’idea di rappresentare grafica-
mente la velocità istantanea del corpo mobile in funzione del tempo. 
Su una retta orizzontale riporta una scala proporzionale al tempo, da 
cui traccia delle perpendicolari la cui lunghezza è proporzionale alla 
velocità del mobile nell’istante corrispondente. Egli s’interessa parti-
colarmente a esaminare la regione del piano in cui compaiono queste 
perpendicolari successive. Grazie allo studio di casi particolari sem-
plici e la loro generalizzazione, Oresme giunge alla conclusione che 
l’area della superficie interessata dalle diverse perpendicolari tracciate 
a partire da ciascun punto della scala del tempo è proporzionale alla 
distanza percorsa dal mobile durante l’intervallo di tempo. Questo po-
stulato è alla base delle scoperte relative al moto uniformemente ac-
celerato. Attraverso un sottile ragionamento matematico e aiutandosi 
con una altrettanto penetrante intuizione spaziale e rappresentazione 
diagrammatica, Nicolas Oresme perviene a stabilire la legge fondamen-
tale del moto rettilineo uniformemente accelerato, vale a dire che, se la ve-
locità all’istante iniziale v0 è nulla, la distanza percorsa sarà proporzionale al 
quadrato del tempo t2. 

Questa legge ebbe una notevole diffusione nel periodo trascorso tra 
Oresme e Galileo e fu insegnata ad Oxford dal filosofo, logico e mate-
matico britannico William Heytesbury (1313-1372) e dai suoi discepo-
li. Una delle ragioni per cui abitualmente si attribuisce questa legge 
a Galileo, è perché lo scienziato pisano ha avuto l’idea di utilizzare un 
piano inclinato per verificare sperimentalmente quale legge si appli-
casse al moto di caduta dei corpi. Ma anche perché Galileo non fu par-
ticolarmente propenso a riconoscere il valore delle scoperte fatte dagli 
scienziati che l’avevano preceduto. È il caso di Archimede per quanto 
riguarda la matematica (proprietà delle spirali, definizione dell’area e 
del volume della sfera, enunciato del problema della quadratura della 
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parabola, in cui egli dimostra con vari metodi che l’area di un segmento di 
parabola vale quattro terzi l’area del triangolo avente la stessa base), la mecca-
nica razionale (il principio della leva), la meccanica dei fluidi (principio 
di Archimede) e l’astronomia. È anche il caso di Keplero per quanto 
riguarda le sue scoperte astronomiche sul moto planetario (Astronomia 
nova, 1609), e di Giordano Bruno in relazione alle sue strabilianti idee 
che ammettevano la natura infinita dell’universo e la possibile esisten-
za di un numero infinito di mondi (ovvero di galassie) all’interno di 
esso (in De l’infinito, universo e mondi, 1584). Va infine osservato che il 
Trattato sulla configurazione delle qualità e del movimento è stato un mo-
mento importante dello sviluppo concettuale della scienza e della filo-
sofia della natura. La dottrina di Oresme fu diffusa in tutta Europa, tra 
cui l’Italia. Tuttavia, non circolò l’opera originale, ma un compendio 
intitolato Tractatus de latitudinibus formarum, nel quale mancavano al-
cuni metodi e ragionamenti importanti sviluppati da Oresme nel suo 
Trattato originale. Alcune lacune furono colmate dal filosofo e mate-
matico parmigiano Biagio Pelacani (1355-1416), che insegnò a Padova. I 
suoi scritti ebbero larga diffusione in Italia, ed è probabile che Galileo 
per suo tramite fosse a conoscenza delle scoperte di Oresme. 

Sul piano filosofico, non senza una certa temerarietà, Galileo oppo-
se alle convinzioni dei ‘filosofi in libris’ la certezza che la vera filosofia 
naturale era tutta da costruire, facendo domande singole e chiare alla 
natura, costringendola a rispondere con precisione, generalizzando le 
risposte sotto forma di leggi, confrontando di nuovo le leggi con l’e-
sperienza. Ipotesi teorico-fattuali e verifica matematica, induzione 
e deduzione, analisi e sintesi, sono per Galileo momenti ed elementi 
estremamente interconnessi del “buon” metodo scientifico, che tutta-
via non troviamo mai espressamente compendiati in enunciati precisi. 

Nel Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernica-
no (1632), l’interlocutore copernicano Salviati critica Aristotele per aver 
costruito la ‘fabbrica del mondo’, ossia il cosmo geocentrico e geosta-
tico secondo i precetti di una ‘architettura’ arbitraria, ovvero la distin-
zione ontologica tra moti circolari e moti rettilinei, tra mondi incor-
ruttibili e perfetti e sfera sublunare. C’è comunque da notare a questo 
proposito che la concezione di Aristotele, che egli espone nelle sue due 
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opere maggiori che trattano della “filosofia della natura”, la Fisica e la 
Metafisica, è ben più ricca e complessa e viene spiegata dall’autore con 
argomenti fisici e formali spesso esposti in modo rigoroso. 

Va anche precisato che i precetti d’architettura galileiana non deri-
vano da una fonte unica, ma da più fonti antiche. Anzitutto la statica e 
l’idrostatica di Archimede, dal quale Galileo apprese a impostare quan-
titativamente, matematicamente il problema della caduta dei gravi e 
del moto in generale; in secondo luogo la certezza che il mondo fisico 
possedesse una determinata struttura geometrica e fosse conforme a 
leggi matematiche precise, ch’egli amava esprimere in termini platoni-
ci; e ancora, dalla concezione corpuscolare della materia e della sensa-
zione, che risale a Democrito. 

Quando nel 1609 Galileo volse il cannocchiale verso il cielo, fu un 
evento memorabile nella storia del pensiero umano. È noto che cosa 
“vide” e annunciò al mondo con la pubblicazione nel 1610 del breve 
trattato di astronomia, Sidereus Nuncius. La Luna gli apparve “aspra e 
ineguale, ripiena di protuberanze e di cavità simili ma assai maggiori 
ai monti e alle valli della Terra”; su quei monti sorgeva e tramontava il 
sole come sulla Terra. La Via Lattea si rivelava un enorme ammasso di 
stelle lontanissime, i pianeti e le costellazioni apparivano più distinti.

In quegli stessi anni in cui Galileo era intento a osservare le carat-
teristiche irregolari e imperfette della Luna e a mostrare l’esistenza 
di satelliti orbitanti intorno al pianeta Giove, le cui traiettorie variano 
geometricamente e la loro direzione è retrograda rispetto al senso di 
rotazione di Giove, il matematico, astronomo, fisico e teologo tedesco 
Johannes Kepler era dedito a scoprire le ragioni geometriche dell’ar-
monia del cosmo e a elaborare una teoria matematica capace di spie-
gare le leggi del moto e dunque la dinamica dei corpi celesti nell’Uni-
verso. Galileo e Keplero si scambiarono lettere di collaborazione e di 
stima riguardo alle scoperte del Sidereus Nuncius, ma l’uno non conobbe 
o non apprezzò la scoperta kepleriana delle ellissi, né l’altro seppe uti-
lizzare i concetti essenziali della dinamica galileiana. Descartes, d’altra 
parte, scorse con poca attenzione il Dialogo sui massimi sistemi… e non 
dette molto credito al metodo sperimentale galileiano. Il filosofo e ma-
tematico ritrovò a sua volta insieme con il filosofo e scienziato Isaac 
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Beeckman la legge del moto uniformemente accelerato e “geometriz-
zò” il concetto di inerzia all’interno di una concezione rigorosamente 
euclidea dello spazio. 

Un progresso decisivo fu ottenuto dal fisico e matematico britan-
nico Isaac Newton poco più di cinquant’anni dopo le osservazioni e 
scoperte importanti fatte da Galilei. A partire dal 1666, Newton riuscì 
ad unificare in una teoria coerente e armonica i diversi risultati di Ke-
plero sulle cause dei moti planetari e di Cartesio sul peso dei corpi sulla 
Terra, dando alle leggi dinamiche elaborate dai suoi predecessori una 
sistemazione teorica decisamente più intelligibile. Risolto il problema 
dinamico del moto di un corpo grazie al modello geometrico dell’elis-
se introdotto da Keplero, Newton unificò concettualmente il principio 
cartesiano del moto rettilineo uniforme di una particella materiale in 
vacuo, la legge galileiana della scomposizione delle forze e le tre leggi di 
Keplero circa i moti planetari, pervenendo così, progressivamente, alla 
formulazione matematica della legge di gravitazione universale, secondo 
la quale i corpi nell’universo si attraggono in ragione direttamente proporzio-
nale alle loro masse e inversamente proporzionale alle loro distanze. 

Tale legge rappresentava la definitiva unificazione della fisica ter-
restre e della fisica celeste, nel cui contesto la legge galileiana della 
caduta dei gravi veniva vista come un caso particolare della legge di 
gravitazione universale.

Si può capire che Newton abbia detto «hypoteses non fingo» sulla 
causa della gravitazione, essendosi pronunciato in favore di un tempo 
e di uno spazio assoluti non avrebbe mai potuto trovare nella geome-
tria l’origine e l’interpretazione della gravitazione. E, del resto, come 
avrebbe potuto immaginare una geometria diversa da quella euclidea, 
l’unica nota al suo tempo?

2. Alla ricerca della simmetria: da Platone a Keplero

Una certa concezione della matematica, ispirata alle idee di equili-
brio, armonia e giusta proporzione fu elaborata da Platone e dai suoi 
discepoli, e insegnata nell’accademia fondata da Platone ad Atene 
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nel 387 a.C. Essa venne in seguito ripresa e sviluppata dalla corrente 
neo-platonica. Uno dei contributi fondamentali della filosofia plato-
nica e del neoplatonismo allo studio della natura consistette nell’im-
portanza attribuita alla geometria nella formazione intellettuale. Nel 
dialogo Repubblica, Platone rilevò la necessità della matematica come 
esercizio per la mente che cerca di comprendere le forme nella loro 
possibile perfezione. Già per Platone, la geometria consente di cono-
scere ciò che si conserva nel cambiamento, ed è perciò l’origine di un 
certo ordine (dinamico e non statico) della natura e forse della mente. 
Oggi diciamo che la geometria (la quale nel frattempo si è arricchita di 
molte nuove nozioni e teorie) cerca di conoscere quelle strutture ma-
tematiche che si conservano al seguito di determinate trasformazio-
ni (simmetrie) e deformazioni (per esempio immersioni), ed è questa 
invarianza che assicura una certa stabilità del mondo matematico e 
del mondo reale, che si suppongono essere profondamente connessi. 
Nel Timeo Platone espone la sua cosmologia e consegna alla tradizione 
successiva l’idea che tutto sia retto dalla simmetria, da rapporti e pro-
porzioni. I solidi platonici, cioè i sei poligoni regolari, sono una chiara 
espressione di questo principio e riflettono l’idea che il mondo fisico 
segue un certo ordine ideale senza mai però poterlo raggiungere. A 
questo proposito, il fisico Werner Heisenberg ha osservato che: 

Per Platone, al limite inferiore [a fondamento] degli enti materiali non si 
trova più in realtà qualcosa di materiale, ma una forma matematica; dicia-
mo una struttura che non è solo fisica, ma metafisica. L’elemento primordia-
le che ci permette di comprendere unitariamente il mondo è, in Platone, la 
simmetria matematica, l’immagine, l’idea, da qui il nome d’idealismo per la 
concezione platonica. […] Per Platone la forma è caratteristica per le proprietà 
dell’elemento materiale considerato, ne costituisce parte essenziale delle sue 
proprietà fisiche. Contrariamente a quanto pensava Democrito, in Platone 
le particelle di materia (terra, acqua, aria, fuoco) non sono invariabili e indi-
struttibili; al contrario esse possono essere scomposte in triangoli ed essere 
ricostituite da triangoli (e dunque non hanno più niente di fisico).

Tuttavia, fu Keplero a sottolineare tutta l’importanza della sim-
metria per la conoscenza delle “vere” cause dell’ordine del cosmo e del 
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mondo fisico. Per lui, non solo il cerchio e la sfera avevano anche un 
significato in un certo senso “divino”, oltre che matematico, ma in più 
riteneva che fossero archetipi che strutturano le proprietà e il diveni-
re dei fenomeni reali. Nello stesso tempo, egli capì che non erano gli 
enti geometrici più perfetti e neanche i più atti a spiegare i segreti del 
comportamento dei corpi naturali e celesti: infatti, sia la classe delle el-
lissoidi (analoghi tridimensionali delle ellissi), forme geometriche che 
si ottengono a partire da una deformazione continua della sfera, che 
quella dei poliedri (convessi) regolari contengono un più gran nume-
ro di simmetrie, e pertanto consentono determinate trasformazioni 
impossibili da effettuare con il cerchio e la sfera. Poiché sono ricchi 
in simmetrie e suscettibili di una molteplicità di trasformazioni che 
lasciano invariate le proprietà essenziali dei corpi celesti, questi solidi 
geometrici fungono, secondo il matematico e astronomo tedesco, da 
modello per spiegare le leggi del sistema solare. Keplero andò ben oltre 
Platone nel suo studio della natura e del ruolo delle simmetrie, e riuscì 
a fare quello che né Copernico né Galilei osarono fare. Solo contro tutti, 
egli oserà nell’Astronomia nova (1609) prima rinunciare al centro dei cer-
chi, poi rinunciare all’eccentricità del movimento e al moto uniforme, 
e infine allo stesso cerchio, mostrando che si possono deformare le or-
bite circolari in orbite ovali e poi ellittiche, liberandosi così, come dirà 
nell’Astronomia nova, delle «macine dei cerchi».

Quando si parla del ruolo della simmetria nell’astronomia di Keplero 
si pensa subito ai cinque poliedri regolari. In realtà, il ruolo dei solidi 
platonici è in Keplero via via sempre più marginale, allusivo e simbolico, 
limitato alla determinazione del numero dei pianeti, mentre altre sim-
metrie, basate sugli accordi armonici e rivelatrici di forme naturali più 
complesse, acquisteranno sempre più il ruolo di struttura portante del 
cosmo e della natura3. Alla fine della sua fatica Keplero penserà di aver 
trovato, tramite una struttura astratta o forma ideale di natura mate-
matica, il modo di tenere insieme numero di pianeti, distanze dei pia-
neti dal sole, periodi di rivoluzione, densità e masse dei pianeti, dimen-

3	 Cfr. Luciano Boi, Symmetry and Symmetry Breaking in Physics: From Geometry to Topo-
logy, in «Symmetry», 13 (2021), pp. 2100-2120.
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sioni del cosmo... e persino teologia, anima e forma di governo. Nella 
Dissertatio cum Nuncio Sidereo, pubblicata nel 1610, subito dopo aver letto 
il Sidereus Nuncius di Galileo, Keplero espone i motivi del suo interesse 
particolare per la geometria e per i poliedri regolari. Nella geometria, 
dopo la sfera, vi è una famiglia di figure che è la più perfetta di tutte, 
quelle dei cinque solidi euclidei. Questo nostro mondo planetario sa-
rebbe disposto appunto secondo le regole e le proprietà di questi solidi. 
Keplero è alla ricerca della costituzione del cosmo e la via per arrivare 
a spiegarla sta nelle costruzioni che rispondono a certe simmetrie. La 
chiave non sta nei numeri ma nella geometria, non tanto nella semplice 
misura quanto nella forma del movimento. Mentre per Galilei le orbite 
ellittiche rompono la simmetria del cosmo, per Keplero sono la strada 
verso la scoperta di simmetrie ‘nascoste’ più profonde, consistenti in 
rapporti e proporzioni tutte generate dal rapporto di quinta armonica 
3/2. Anche quando Keplero cercò, nella Strena seu de nive sexangula (1611), 
la causa della simmetria sexangula della neve non si diresse verso la 
struttura atomica ma verso motivi formali di efficienza superficie-vo-
lume. Grazie a queste sue intuizioni, Keplero può essere considerato 
in qualche modo il precursore delle idee che condurranno Eulero e La-
grange a elaborare la teoria delle superfici minime e il calcolo delle va-
riazioni. Sono motivi formali – cioè attinenti alle proprietà intrinseche 
e globali delle forme – che fanno sì che l’uomo e il mondo risuonino allo 
stesso modo. La proporzione nelle distanze e nella velocità dei pianeti è 
tale da essere riconosciuta dalla mente umana che porta in sé come ar-
chetipi tali proporzioni. Per Keplero, le orbite ellittiche sono il risultato 
della necessità fisica e delle leggi matematiche dell’armonia. Volendo 
costruire il mondo secondo le leggi dell’armonia non bastano i solidi 
regolari, che darebbero orbite circolari concentriche e velocità costanti; 
le proporzioni armoniche costringono il creatore a far variare le velocità 
dei pianeti. E poiché occorre rispettare la necessità materiale, le ragioni 
della vis, la legge di variazione della velocità deve seguire la «legge del-
la bilancia» e questa impone orbite circolari o ellittiche. Sono dunque 
escluse le orbite circolari eccentriche e i dati astronomici non consento-
no orbite circolari centrate sul sole. In sintesi: (1) dati astronomici + (2) 
armonia + (3) necessità fisica di orbite ellittiche.
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3. Simmetrie, invarianze e leggi fisiche

Oggi sappiamo che quelle che credevamo essere le leggi della natura, 
assolutamente certe e perennemente valide, rappresentano soprattut-
to (anche se non solo) le relazioni tra i fenomeni che abbiamo indaga-
to, e che la loro validità è limitata alla precisione con la quale abbiamo 
osservato i fenomeni stessi. All’aumentare della potenza dei nostri 
metodi d’indagine e all’estensione delle osservazioni a domini prima 
inaccessibili, le leggi che avevamo credute eterne e universali si dimo-
strano essere solo approssimazioni di leggi più generali (…). Non leggi 
della natura, dunque, ma leggi valide per quel modello di natura che ci 
siamo fatti sulla base delle nostre limitate conoscenze. Così all’inizio 
del nostro secolo il “libro” di cui parlava Galileo nel Saggiatore non ci 
appare più come libro della natura, ma come libro dei modelli della 
natura che via via ci facciamo sulla base delle nostre osservazioni e de-
scrizioni fenomenologiche. 

La nostra conoscenza della natura si esprime in relazioni matemati-
che. La cosa straordinaria è che quando nuovi fenomeni ci costringono 
ad abbandonare un modello per sostituirlo con un altro più generale, 
quest’ultimo si rivela più bello, cioè matematicamente più strutturato 
e più simmetrico, quasi che la ricerca della bellezza matematica coin-
cidesse con la ricerca della verità. In altre parole, la bellezza come cri-
terio estetico è un elemento intrinseco importante dell’indagine della 
natura e della conoscenza delle cause dei suoi fenomeni; la bellezza ha 
quindi valore estetico, euristico ed epistemico fondamentale4.

Il modello di indagine seguito da Galileo era fondato sull’unione 
dell’osservazione dei fenomeni e della generalizzazione astratta, ovve-
rosia, tra pratica sperimentale e ricerca di leggi generali. La matema-
tica è il linguaggio nel quale il libro della natura è scritto. Aver capito 
che essa è la chiave per intendere la natura, almeno la natura dei fisici, 

4	 Per considerazioni approfondite su questo tema, cfr. Luciano Boi, Some Mathema-
tical, Epistemological, and Historical Reflections on the Relationship Between Geometry and 
Reality, Space–Time Theory and the Geometrization of Theoretical Physics, from Riemann to 
Weyl and Beyond, in «Foundations of Science» 24 (1), 2019, pp. 1-38.
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è stata probabilmente l’idea più originale di Galileo: da una parte l’os-
servazione accurata dei fenomeni, sapientemente spogliati dei det-
tagli contingenti, ha suggerito nuove idee alla matematica (il calcolo 
differenziale è nato così), dall’altro teorie elaborate per puro interesse 
intellettuale dai matematici si sono dimostrate profondamente fecon-
de per interpretare fenomeni ignoti al tempo in cui tali teorie sono sta-
te inventate. 

Molto significativa per le applicazioni fisiche fu la generalizzazio-
ne del concetto di spazio operata grazie alla scoperta delle geometrie 
non euclidee, alla geometria intrinseca delle superfici curve e alla teo-
ria delle varietà differenziabili elaborate, rispettivamente, da Gauss e 
Riemann5. Il concetto di spazio, liberato dalla rigida cornice euclidea 
basata in parte sulla percezione visiva e tattile, fu esteso al di là delle tre 
dimensioni tradizionali, a un numero arbitrario, anche infinito di esse. 
La geometria entrò nell’Ottocento in un periodo – che dura tutt’ora – 
di straordinaria creatività inventando strutture matematiche nuove di 
cui quelle note alla geometria euclidea sono solo casi particolari. 

Un esempio della potenza dell’astrazione matematica è il passag-
gio dall’idea vaga di simmetria al concetto matematico di gruppo che 
secondo Hermann Weyl6 è il più originale fra quelli introdotti e svilup-
pati dalla matematica dell’Ottocento. Quella di simmetria è una delle 
idee guida della scienza, la quale mira a spiegare i fenomeni conforme-
mente a leggi, cioè a regolarità, all’invarianza nel cambiamento. Nell’i-
dea di simmetria sono presenti due elementi: da un lato l’oggetto che è 
simmetrico (che presenta certe regolarità), il cerchio o il quadrato per 
esempio, dall’altro le operazioni (o trasformazioni) che possiamo fare 
sull’oggetto lasciandolo immutato; per esempio una qualunque rota-
zione del cerchio attorno a un asse passante per il centro e perpendi-

5	 Carl Friedrich Gauss, Disquisitiones circa superficias curvas, Göttingen 1827, in 
Werke, vol. iv, Göttingen, 1873. Georg Friedrich Bernhard Riemann, Über die 
Hypothesen, welche der Geometrie zu Grunde liegen, Habilitationsarbeit, 1854, in Ber-
nhard Riemann Gesammelte Mathematische, nuova edizione, Springer-Verlag, 1990, 
pp. 304-319.

6	 Hermann Weyl, Symmetry, Princeton University Press, 1952.
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colare al piano del cerchio o, nel caso del quadrato, le rotazioni di 90°, 
180°, 270° e 360° gradi.

In un linguaggio un po’ più preciso parliamo di un insieme I i cui 
elementi designeremo con E1, E2, E3,…, En (I per esempio il cerchio, gli 
elementi E1, E2, E3,…,En i punti del cerchio) e di un gruppo G di tra-
sformazioni che chiameremo g1, g2, g3,…, gi che agiscono su I nella ma-
niera seguente: la trasformazione gi applicata all’elemento Ej lo manda 
nell’elemento Ek di I, cioè gi Ej  = Ek .

Concisamente diremo che l’insieme I è simmetrico o invariante ri-
spetto a G se una qualunque trasformazione di G manda un elemento 
di I in un elemento di I. Sia l’insieme I che il gruppo G possono avere 
un numero infinito di elementi: negli esempi che ho citato sia i punti 
del cerchio che quelli del quadrato sono infiniti, le rotazioni di G che 
lasciano invariato il cerchio sono infinite, quelle che lasciano invaria-
to il quadrato sono invece in numero finito, cioè formano un gruppo 
finito. Nel primo caso abbiamo un gruppo continuo; nel secondo, un 
gruppo discreto.

Un gruppo si dice continuo se ha un numero infinito di elementi, 
e discreto se contiene un numero finito di elementi. I gruppi continui 
sono molto importanti sia in matematica che in fisica perché collegano 
profondamente il mondo dei “concetti” matematici agli “oggetti” del 
mondo fisico tramite le operazioni di trasformazione, cambiamento e 
invarianza. Possiamo definirli come quei gruppi in cui l’insieme degli 
elementi, oltre ad avere una struttura di gruppo (vale a dire che gode 
delle proprietà dell’associatività, dell’esistenza dell’elemento neutro e dell’e-
sistenza dell’inverso; ricordiamo che un gruppo si dice abeliano se tutti i 
suoi elementi commutano, e non abeliano se non commutano), è anche 
uno spazio topologico con topologia compatibile con l’operazione de 
gruppo. 

Fra i gruppi continui, i gruppi di Lie assumono particolare rilevan-
za in fisica. Si tratta di gruppi topologici in cui l’insieme di punti, oltre 
ad essere uno spazio topologico, formano una varietà differenziabile. 
Un gruppo possiamo pensarlo localmente isomorfo a Rn. Citiamo al-
cuni dei gruppi più importanti. Il gruppo delle rotazioni nel piano R2: 
l’elemento del gruppo prende il nome di SO(2) (gruppo delle matrici 
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2×2 ortogonali con determinante 1); il gruppo è unidimensionale (cioè 
dipende da un solo parametro reale, l’angolo di rotazione θ di un vet-
tore (x, y)) ed è abeliano; è importante notare che l’elemento θ è equi-
valente all’elemento θ + 2π e ciò rende il gruppo compatto in quanto 
equivalente, come varietà, ad un cerchio. Nello spazio bidimensionale 
complesso, il piano complesso di Gauss di equazione u = x + iy, si ha il 
gruppo U(1) la cui rotazione è rappresentata dalla “matrice unidimen-
sionale” U(θ) = eiθ , che è una fase. È importante osservare che le matrici 
dei due gruppi precedenti soddisfano le stesse proprietà, quindi coin-
cidono, o, in termini matematici, sono isomorfi SO(2) ~ U(1). Essi go-
dono inoltre della seguente importante proprietà: l’azione del gruppo 
può essere ottenuta come composizione di un numero molto grande di 
trasformazioni “infinitesime” successive. Due altri gruppi importanti 
sono legati al momento angolare in Meccanica Quantistica. Si tratta 
del gruppo delle rotazioni in R3, SO(3), e del gruppo SU(2) delle matrici 
unitarie con determinante 1. Un gruppo topologico si dice compatto se 
è munito di una struttura di varietà topologica compatta, compatibi-
le con la struttura algebrica, le cui operazioni di gruppo che agiscono 
sulla varietà sono funzioni continue. I gruppi di simmetrie di gauge 
sono: il gruppo U(1) per l’elettrodinamica quantistica, il gruppo SU(2) 
× U(1) per le interazioni elettrodeboli e il gruppo SU(3) per la cromodi-
namica quantistica. I gruppi di Lie sono gruppi topologici localmente 
compatti. Un teorema importante ci dice che se G è un gruppo topologico 
compatto, allora le seguenti proposizioni sono equivalenti: (a) G non ha sotto-
gruppi piccoli; (b) G è un sottogruppo chiuso di O(n) per qualche n>0; (c) G è 
un gruppo di Lie.

Un gruppo euclideo si compone di rotazioni e traslazioni. Una ro-
tazione è un’isometria, cioè una trasformazione geometrica che sposta 
gli elementi in modo rigido lasciando inalterate le distanze. Ogni ro-
tazione del piano è definita da un punto O, detto centro di rotazione, 
e da un angolo α caratterizzato da un’ampiezza e da un verso, che può 
essere orario o antiorario. Una traslazione è una trasformazione geo-
metrica che conserva la misura delle lunghezze e l’ampiezza degli an-
goli, due figure ottenute mediante una traslazione sono direttamente 
congruenti. In fisica: (i) la traslazione corrisponde al seguente fenome-
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no: tutte le particelle descrivono traiettorie (le rette che uniscono due 
punti qualsiasi di un corpo rimangono sempre parallele alla direzione 
iniziale); ii) la rotazione intorno a un asse corrisponde al fatto che tutte 
le particelle descrivono traiettorie circolari attorno a una retta chiama-
ta asse di rotazione. 

Consideriamo ora un esempio più ricco, il piano, che è illimitato. 
È chiaro che il piano resta invariato (cioè immutato) se applichiamo 
una traslazione a (ossia spostiamo) ogni punto P per un segmento 
arbitrario A e anche se ruotiamo tutto il piano attorno a un asse ar-
bitrario perpendicolare al piano. L’insieme di tutte le traslazioni e 
di tutte le rotazioni è un gruppo, detto gruppo euclideo. Ognuna di 
queste rotazioni e traslazioni lascia invariata la distanza d (P, P’) 
fra due punti qualunque P, P’ del piano. Una proprietà interessante 
dei gruppi che appare quando si compongono due trasformazioni (o 
azioni del gruppo): per esempio, se prima effettuiamo una trasla-
zione applicata al punto O (l’origine di due rette perpendicolari) e 
una rotazione intorno a O di un angolo di 90°, poi ripetiamo que-
ste stesse operazioni invertendone l’ordine, cioè prima la rotazio-
ne poi la traslazione, otteniamo allora un risultato diverso da quello 
che avevamo ottenuto prima: questa proprietà del gruppo si chiama 
non-commutatività. In altre parole, le rotazioni nel piano (attorno a 
un asse perpendicolare al piano) e le traslazioni sono due operazioni 
che non commutano. 

4. Gli sviluppi concettuali della fisica nell’Ottocento: Newton, Maxwell, 
Planck, Einstein

Il quadro concettuale della fisica dell’Ottocento rimane quello defini-
to nei Principia di Newton (Philosophiæ naturalis principia mathematica, 
1687): lo spazio euclideo assoluto e il tempo, anch’esso assoluto, ambe-
due dati a priori ma rigorosamente separati, ambedue infiniti, sono la 
sede dove si svolgono i fenomeni dovuti al moto e alle trasformazioni 
della materia. Né i fenomeni influenzano la cornice spazio-temporale, 
né questa reagisce sui fenomeni. 
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L’elettromagnetismo di Maxwell, come la meccanica classica di 
Newton, Euler, Bernoulli, Lagrange, Laplace, Hamilton, ecc., sembra-
va confermare una concezione deterministica dell’evoluzione tempo-
rale dei fenomeni: noto lo stato di un sistema fisico a un dato istante t0 
e tutte le forze che agiscono su di esso, è possibile determinare lo stato 
ad ogni istante successivo.

Lo “stato”, nel caso di un sistema di particelle in meccanica classica, 
è definito dalla sua posizione nello spazio (coordinate spaziali) e dal-
la velocità a un dato istante, ove questa velocità può rimanere costan-
te oppure variare con intervento dell’accelerazione, che rappresenta 
quindi la derivata seconda rispetto al tempo. Caratteristica della fisica 
dell’Ottocento è la rappresentazione di tutte le grandezze fisiche con 
funzioni reali e continue delle coordinate spaziali e del tempo, formula-
zione matematica dell’antica affermazione “Natura non facit saltus”, le 
grandezze fisiche possono così essere moltiplicate fra loro e tale pro-
dotto è indipendente dall’ordine dei fattori. 

Il primo anno del secolo XX (1901) segnò l’inizio di una nuova conce-
zione della materia. Nel dicembre del 1900 Max Planck presenta all’Ac-
cademia delle Scienze di Berlino la sua interpretazione dei risultati 
sperimentali di Rubens et Kulbaum dalla quale emerge che dopo tutto 
“Natura facit saltus”. Per un quarto di secolo questo risultato, estraneo 
all’ortodossia scientifica ottocentesca, turberà i più brillanti ingegni e, 
quando finalmente verrà interpretato, la fisica non sarà più quella di 
prima e la natura ci apparirà qualcosa di molto meno meccanico e de-
terministico di quanto i filosofi dei lumi avevano cercato di far credere.

Qualche anno dopo la scoperta di Planck, si ha una delle tre gran-
di rivoluzioni scientifiche e concettuali della fisica del Novecento: la 
scoperta della relatività ristretta ad opera di Albert Einstein nel 1905. 
Questa teoria sta alla base di gran parte della fisica del Novecento, e 
soprattutto ha introdotto una concezione dello spazio e del tempo che 
ha profondamente cambiato la nostra visione della natura. 

Facciamo un passo indietro. Qual è l’idea che Galileo aveva dello 
spazio e del tempo? Nella sua visione, il tempo è assoluto e lo spazio 
è relativo, la misura dipende dal moto dei sistemi inerziali di riferi-
mento. L’approccio sperimentale di Galileo consiste nello studio dei 
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fenomeni, i quali sono stati pensati per confermare un’ipotesi teorica. 
Famoso è l’esempio in cui egli enuncia (nel Dialogo sopra i due Massimi 
Sistemi del Mondo Tolemaico e Copernicano, 1632) il suo principio della rela-
tività, vale a dire che i moti dei corpi sono gli stessi sia che ci si trovi in 
uno stato di quiete sia in moto rettilineo uniforme, quindi le leggi della 
meccanica sono le stesse in tutti i sistemi inerziali. Da ciò si evince 
che non è possibile stabilire se stiamo fermi o se ci muoviamo di moto 
rettilineo uniforme, quindi non esiste lo stato di quiete assoluto: tutti 
gli osservatori hanno pari valore in quanto ognuno può considerare sé 
stesso come Primo Motore Immobile. 

Newton attribuiva allo spazio e al tempo la qualifica di assoluti, cioè 
li considerava come qualcosa di dato a priori, fissi e immutabili, indi-
pendenti l’uno dall’altro; per ciascuno di essi vale la geometria eucli-
dea, rispettivamente quella dello spazio a tre dimensioni e quella di 
una retta (a una dimensione). Ambedue sono infiniti: verso il passato e 
verso il futuro il tempo; a Nord e a Sud, a Est e a Ovest, in alto e in bas-
so, lo spazio. La geometria della retta che rappresenta il tempo resta 
invariata se spostiamo l’origine del tempo. Diciamo che nulla cambia 
se a ogni tempo t, aggiungiamo o togliamo un qualunque tempo fisso. 
In linguaggio preciso diciamo che la fisica è invariante rispetto alle tra-
slazioni temporali (cioè non cambia se cambiamo l’origine del tempo). 

Per individuare un punto nello spazio occorre fissare un punto di 
riferimento S, cioè dare un punto O e tre rette perpendicolari fra loro 
nascenti da O: per esempio, O può essere lo spigolo di una stanza e 
le tre rette quelle definite dall’intersezione di due pareti e di ciascuna 
di queste con il pavimento. Fissato il riferimento S, ogni punto dello 
spazio è individuato da tre numeri (x1, x2, x3), che rappresentano le di-
stanze, con segni opportuni, dai tre piani definiti da S: le due pareti e 
il pavimento. Naturalmente invece di S, possiamo prendere un altro 
riferimento S’ la cui origine è un altro punto O’ ottenuto da O con una 
traslazione e le cui rette perpendicolari sono ruotate rispetto a quelle 
che definivano il riferimento S. Nel riferimento S’ il punto P è indivi-
duato da tre numeri diversi dai precedenti, chiamiamoli (X1, X2, X3). 
Come sappiamo, le proposizioni della geometria euclidea sono inva-
rianti rispetto alle trasformazioni (traslazioni e rotazioni del gruppo 
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euclideo). Ciò significa che esse mantengono la stessa forma sia che 
le esprimiamo usando le coordinate (x1, x2, x3) del sistema S sia che le 
esprimiamo usando quelle (X1, X2, X3) del sistema S’. 

Siamo abituati a pensare lo spazio e il tempo come due concetti asso-
lutamente distinti, ma se esaminiamo la cosa attentamente ci rendiamo 
conto che è difficile pensare all’uno senza l’altro. Minkowski ha giusta-
mente osservato che nessuno ha mai visto un posto se non a un certo 
tempo, né ha vissuto un istante se non in un dato posto. A questa unio-
ne di spazio e tempo si dà il nome di evento, caratterizzato da quattro 
numeri (x1, x2, x3, t): i primi tre precisano, rispetto a un dato sistema di 
riferimento, la posizione nello spazio, e il quarto, t, l’istante corrispon-
dente rispetto a una data origine del tempo. L’insieme di tutti gli eventi 
si chiama spazio-tempo ed è chiaramente uno spazio a 4 dimensioni. 

Il primo a porsi il problema di quali movimenti relativi di due siste-
mi di riferimento fossero compatibili con le osservazioni fu Galileo, e 
la soluzione che ne diede è contenuta nel principio che oggi chiamia-
mo relatività galileiana, la quale era basata sull’osservazione di feno-
meni meccanici. Secondo tale principio, verificato la prima volta spe-
rimentalmente da P. Gassendi nel 1640, non è possibile decidere con 
esperimenti meccanici se il nostro sistema di riferimento sia in quiete 
o si muova di moto rettilineo uniforme. L’unica cosa che ha senso è il 
moto relativo di due oggetti, non quello assoluto di un solo oggetto. 

Gassendi fece l’esperienza suggerita da Galileo di lasciar cadere una 
pietra dall’albero di una nave che si muoveva con velocità uniforme ri-
spetto alla riva in un mare calmo: la pietra cadde, come aveva predetto 
Galileo, ai piedi dell’albero, come se la nave fosse ferma. Se ne conclude 
che è impossibile distinguere con esperienze meccaniche lo stato di 
quiete da uno stato di moto rettilineo uniforme. Naturalmente il moto 
deve essere rettilineo e uniforme: un moto accelerato è facilmente av-
vertibile non foss’altro per gli effetti che esso provoca in ognuno di noi. 

Tradotto in un linguaggio preciso questo significa che il principio 
di relatività impone che le rotazioni (che nel caso della nave corrispon-
dono al rullio e al beccheggio) devono essere indipendenti dal tempo, 
mentre le traslazioni devono dipendere linearmente dal tempo (cioè 
essere proporzionali al tempo).
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Esplicitamente il principio di relatività galileiana significa che le 
coordinate (x1, x2, x3, t) e le coordinate (x1 - v1t, x2 - v2t, x3 – v3t, t + a0) dello 
stesso evento in due sistemi che si muovono l’uno rispetto all’altro con 
velocità v = (v1, v2, v3) sono perfettamente equivalenti. Le trasforma-
zioni che fanno passare da x1 a x1 – v1t, ecc. formano un gruppo che si 
chiama gruppo di Galileo, anche se Galileo non lo disse mai perché non 
conosceva il concetto di gruppo.

La meccanica newtoniana è determinata dalla richiesta che le sue 
equazioni siano invarianti rispetto alle trasformazioni del gruppo di 
Galileo, allo stesso modo come, secondo Felix Klein (il matematico te-
desco autore del ben noto Programma d’Erlangen, 1872), la geometria 
euclidea è determinata dalla richiesta che le sue proposizioni siano in-
varianti rispetto al gruppo euclideo. 

Il gruppo di Galileo determina la struttura dello spazio-tempo 
(l’ambiente della fisica), la quale oltre che a risultare tutt’altro che intu-
itiva è, dal punto di vista matematico, assai poco elegante. Ciò deriva 
dal fatto che lo spazio e il tempo sono trattati in maniera asimmetrica 
nella meccanica classica, nella quale spazio e tempo hanno un ruolo 
molto diverso. Lo spazio della fisica classica, matematicamente par-
lando, è uno “spazio fibrato” la cui base è la retta del tempo e le cui fibre 
sono spazi euclidei tridimensionali. 

Uno spazio fibrato è un concetto chiave della matematica del XX° 
secolo. Va innanzitutto chiarito che l’idea di fibrato consiste nell’as-
sociare a ogni punto di una varietà uno spazio vettoriale della stessa 
dimensione della varietà: quest’oggetto si chiama spazio tangente. L’u-
nione disgiunta degli spazi tangenti, detta fibrato tangente alla varietà, 
ha a sua volta una struttura naturale di varietà, di dimensione pari al 
doppio di quella della varietà di partenza. Il fibrato tangente è il primo 
esempio di una classe molto importante di varietà, i fibrati vettoriali, 
che possono essere descritti, in termini generali, come unione disgiun-
ta di spazi vettoriali associati in modo differenziabile ai punti di una 
varietà di base. La definizione formale dei fibrati vettoriali comprende 
lo studio delle sezioni dei fibrati vettoriali, cioè le applicazioni differen-
ziabili che associano a ciascun punto della varietà base un vettore nel 
corrispondente spazio vettoriale. Le sezioni del fibrato tangente sono 
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i campi vettoriali. In questo modo il fibrato diventa un oggetto dinami-
co. Infatti, dare un campo vettoriale è come assegnare in maniera dif-
ferenziabile un vettore velocità a ciascun punto della varietà base; un 
punto della varietà che si muove seguendo questa velocità percorre una 
curva detta curva integrale del campo vettoriale. Seguendo le curve inte-
grali per un tempo prefissato si ottiene un’applicazione differenziabile 
da un aperto della varietà a valori nella varietà stessa, detta flusso del 
campo vettoriale. In termini generali, la definizione formale è la se-
guente: una funzione continua p : E → B è un fibrato con spazio totale E, 
spazio di base B e spazio fibra F se esiste un ricoprimento aperto {U} di 
B, e per ogni U ∈ {U}un omeomorfismo ϕU : U × F → p–1(U) con p0ϕU(x, y) 
= x per x ∈ U e y ∈ F; per ogni b ∈ B, p–1(b), che è omeomorfa a F, si defi-
nisce la fibra sopra b. Il fibrato ζ = (E, B, F, p) viene inoltre fornito di un 
gruppo strutturale G, che agisce su E e su F. Si tratta di una struttura 
molto ricca e, in particolare, se lo spazio di base B soddisfa a particolari 
condizioni, la proiezione p del fibrato è una fibrazione. Il concetto di 
fibrato ha avuto un’ampia diffusione in molti settori della matematica 
e della fisica. È di particolare interesse il fatto che ogni moderna teoria 
di gauge si basa sullo studio di un fibrato vettoriale, mentre la struttura 
globale dei fibrati permette la formalizzazione del concetto di istanto-
ne e della carica topologica; inoltre, lo studio di grandezze gauge-in-
varianti ha portato alla classificazione degli spazi fibrati mediante le 
classi di Chern (classi di coomologia definite su un fibrato vettoriale 
complesso n-dimensionale) su un fibrato complesso.

5. La relatività speciale (o ristretta) di Einstein

La teoria dell’elettromagnetismo, formulata da Maxwell nel suo A 
treatise on electricity and magnetism (1873) suggerì a Einstein nel 1905 la 
prima profonda revisione del modello newtoniano dello spazio-tem-
po. Nelle equazioni di Maxwell compare una velocità c che l’esperienza 
dimostra essere uguale alla velocità della luce nel vuoto, c = 3 × 108 m/s. 
Fu questa coincidenza, a priori inaspettata, a permettere di includere 
l’ottica tra i fenomeni elettromagnetici e a fornire così la più esplicita 
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conferma della teoria di Mawxell. Come dimostrò una celebre espe-
rienza compiuta da Michelson nel 1879 e in seguito perfezionata nel 
1904, la velocità della luce emessa da una sorgente in moto con velocità 
v è indipendente da v. La velocità della luce appare dunque come la 
velocità massima con cui si propaga un segnale. Nello spazio-tempo 
newtoniano una tale velocità non trova posto, perché in esso non esiste 
alcun limite superiore alla velocità.

Il problema che si presentò ad Einstein era dunque quello di ricon-
ciliare il principio di relatività, l’impossibilità cioè di rivelare un moto 
rettilineo uniforme che l’esperimento di Michelson dimostra esser va-
lido per tutta la fisica e non solo per la meccanica – con la costanza 
della velocità della luce, cioè con la violazione dell’invarianza rispet-
to alle trasformazioni di Galileo che non ammettono nessuna veloci-
tà massima. È chiaro anche che l’esistenza di una velocità massima 
con cui si possono trasmettere segnali è inconciliabile con lo schema 
spazio-temporale newtoniano che ammette la possibilità di definire 
la contemporaneità di eventi separati da qualunque distanza spaziale 
anche infinita. Le modificazioni del concetto di contemporaneità rappre-
senta l’essenza della relatività einsteiniana e della nuova concezione 
dello spazio-tempo. 

Si deve comunque a Poincaré la formulazione precisa del gruppo 
di trasformazioni che lasciano invarianti le equazioni di Maxwell (in 
una memoria apparsa nei Rendiconti del Circolo Matematico di Palermo, 
1897). Sono trasformazioni lineari (ciò dipendenti solo dalla prima 
potenza delle coordinate (x1, x2, x3, t) e le coordinate (X1, X2, X3, T)) 
dello stesso evento in due diversi sistemi di riferimento in moto re-
lativo con velocità v; le trasformazioni dipendono dal rapporto (v/c2) 
e sono tali che nel limite in cui c tende all’infinito si riducono a quelle 
di Galileo.

La geometria dello spazio-tempo della relatività speciale è quindi 
diversa da quella immaginata da Newton ed è matematicamente più 
elegante e concettualmente più soddisfacente di quest’ultima. Infatti 
l’esistenza di una velocità privilegiata c permette di trattare spazio e 
tempo sullo stesso piano, associando a un tempo t una distanza x4 = ct. 
Perciò tempo e spazio non sono più grandezze distinte e incommen-
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surabili come per Newton: conoscendo c ci basta un solo strumento per 
misurare entrambe. 

È quello che facciamo quando parliamo di anno-luce, cioè la distan-
za che la luce percorre in un anno = c × 1 anno = 3 × 108 (m/s) × 3 × 107s = 
9.3 × 1015 m). Lo spazio-tempo diventa così molto più simile allo spazio 
tridimensionale in cui viviamo, cioè diventa, matematicamente par-
lando, uno spazio vettoriale, i cui punti sono eventi che avvengono nello 
spazio-tempo.

Molto simile ma non analogo, perché la geometria dello spa-
zio-tempo non è uguale a quella dello spazio euclideo tridimensionale. 
In quest’ultimo qualunque rotazione o traslazione facciate, il quadrato 
l2 della distanza tra due punti resta invariato. La geometria dello spa-
zio-tempo invece è determinata dal gruppo di Poincaré per il quale la 
distanza spaziale l2 per due eventi e l’intervallo di tempo che li separa 
non sono singolarmente invarianti come avveniva per lo spazio-tempo 
della meccanica newtoniana: solo la combinazione di spazio e tempo 
data da (x1)2 + (x2)2 + (x3)2 - (x4)2 rimane invariata (si noti che l2 = (x1)2 + 
(x2)2 + (x3))2. Spazio e tempo risultano così intimamente connessi sep-
pur in maniera non del tutto simmetrica a causa del segno – davanti a 
(x4)2; la combinazione s2 = (x1)2 + (x2)2 + (x3)2 – (x4)2 non è quadratica, cioè 
non è il quadrato delle distanze del punto O di coordinate (0, 0, 0, 0) 
dal punto P di (x1, x2, x3, x4), perché i quadrati delle distanze sono per 
definizione positivi o nulli solo quando i due punti coincidono. 

6. La relatività generale e l’interazione tra geometria (curvatura) e fisica 
(materia)

Lo spazio della relatività speciale, pur essendo con le sue quattro dimen-
sioni abbastanza lontano dall’intuizione comune, ha tuttavia una strut-
tura geometrica (relativamente) semplice. Esso condivide alcune delle 
sue proprietà con il piano e lo spazio euclideo, ad esempio il fatto che sia 
illimitato e infinito. Noi sappiamo però che ci sono delle superfici e degli 
spazi che sono illimitati e pur finiti, per esempio la sfera e gli ellipsoidi, 
sui quali la geometria d’Euclide non è più valida (o è valida solo local-
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mente, cioè in porzioni infinitesimamente piccole della superficie). In 
particolare queste superfici e questi spazi sono curvi e non piatti. Perché 
non pensare allora che lo spazio-tempo sia anch’esso uno spazio-tem-
po curvo e limitato? Uno spazio-tempo infinito e illimitato come quello 
della relatività speciale, implica quasi necessariamente un universo an-
ch’esso infinito e illimitato nello spazio e nel tempo, ed è proprio questa 
concezione cosmologica che ha dominato il pensiero scientifico e filoso-
fico dal Seicento fino quasi agli anni trenta del secolo scorso. 

La considerazione e lo studio degli spazi curvi ha costituito un ele-
mento di profondo cambiamento concettuale nella matematica e nella 
fisica che ha trasformato in particolare il modo di concepire i rapporti 
tra geometria e fisica.

Abbiamo visto che l’invarianza dei fenomeni elettromagnetici rispet-
to al gruppo di Poincaré ha un’evidenza sperimentale e che questa inva-
rianza è a favore di una fisica ambientata in uno spazio-tempo piatto, 
infinito e illimitato. Ma questo modello di spazio-tempo non è concet-
tualmente soddisfacente. Infatti, mentre sia la relatività galileiana che 
quella speciale di Einstein ci hanno insegnato l’impossibilità di rivelare 
una velocità uniforme assoluta (solo quella relativa ha senso) i moti ro-
tatori (o più generalmente accelerati) danno luogo a fenomeni rivelabili, 
per esempio quelli dovuti alle forze centrifughe (in particolare la forza 
apparente d’inerzia in un sistema di riferimento in moto circolare). Per 
Newton le rotazioni andavano considerate unicamente rispetto allo spa-
zio assoluto, cioè a un sistema di riferimento privilegiato. Per Newton è 
dunque nello spazio che va ricercata l’origine delle forze centrifughe e di 
altre simili. Ma se lo spazio dà origine a forze che agiscono sulla materia 
mentre quest’ultima non reagisce in alcun modo sullo spazio, si ha fra 
spazio e materia una relazione asimmetrica assai poco intelligibile.

La svolta avviene con Gauss e soprattutto con Riemann, il quale nel 
1854 (nel suo scritto di Abilitazione) aveva osservato che questa asim-
metria fra spazio dato a priori, che agisce sulla materia, e la materia 
che occupa lo spazio lasciandolo immutato è concettualmente insod-
disfacente: non ha senso infatti parlare di proprietà dello spazio senza 
tener conto della materia, né del moto di questa senza considerare la 
struttura geometrica dello spazio. 
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Del resto senza materia non è possibile conoscere la struttura del-
lo spazio, non foss’altro perché senza materia non esisterebbero stru-
menti (i corpi rigidi e i metri campione di cui parla prima Helmholtz e 
poi Einstein) per misurare lunghezze e intervalli di tempo e cioè per de-
terminare la struttura metrica (locale) dello spazio-tempo. È più logico 
pensare che sia la distribuzione della materia a determinare la geome-
tria dello spazio-tempo e che questa a sua volta prescriva l’evoluzione 
dei fenomeni fisici e in particolare le leggi del moto. Ciò vuol dire supe-
rare lo schema concettuale che aveva determinato tutta la fisica da Gali-
leo e Newton in poi: uno spazio-tempo rigidamente fissato a priori, nel 
quale si svolgono i fenomeni dovuti alla materia, quasi come una sto-
ria che si svolge in una scena immutabile. In luogo di questo schema, 
Riemann propone una concezione più profonda e più complessa nella 
quale materia e spazio-tempo (fenomeni fisici e strutture geometriche) 
siano inseparabilmente congiunti e dinamicamente interdipendenti: 
l’una, la materia, determina la struttura geometrica dello spazio-tem-
po, e questa a sua volta determina le leggi del moto della prima.

Per la sua teoria della relatività generale Einstein considera non 
solo sistemi di riferimento in moto relativo uniforme, ma anche siste-
mi in moto accelerato. Il moto uniformemente accelerato vale per ogni 
corpo, indipendentemente dalla sua massa e dalla sua composizione, 
il che vuol dire che l’accelerazione che subisce un corpo dipende solo 
dal campo gravitazionale, cioè dalla forza per unità massa. Tale campo 
può annullarsi se si usa un sistema di riferimento fisso in caduta libe-
ra. Einstein ebbe la grande intuizione fisica che la peculiarità della gra-
vitazione (della forza gravitazionale) è l’uguaglianza fra massa inerzia-
le (il coefficiente che moltiplica l’accelerazione) e massa gravitazionale 
(il coefficiente che moltiplica il campo gravitazionale).

L’eliminazione del campo gravitazionale con l’uso di un sistema di 
coordinate in caduta libera non può ottenersi globalmente su tutto lo 
spazio-tempo, a meno che il campo gravitazionale non sia costante. 
Se invece esso varia da punto a punto occorre, per eliminarlo, in ogni 
punto, un diverso sistema di coordinate (sistema di riferimento). Si 
è così condotti a considerare trasformazioni di coordinate generali 
(invertibili) che dipendono in maniera continua e differenziabile dal 
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punto, trasformazioni dunque molto più generali di quelle di Poincaré 
che caratterizzano la geometria della relatività speciale. Queste nuove 
trasformazioni sono quelle della geometria riemanniana che valgono 
per ogni spazio curvo a n dimensioni (n > 3) dotato di una metrica che 
varia localmente in ognuno dei suoi punti. 

In altre parole, quello che ora è richiesto rispetto alle trasformazio-
ni di Poincaré per la relatività speciale è soltanto che tale geometria 
(riemanniana) valga in un intorno piccolo di ciascun punto (cioè local-
mente) dello spazio-tempo, ma non globalmente. La situazione è si-
mile a quella che si ha su una superficie curva bidimensionale, la Terra 
per esempio, la cui geometria, in un intorno piccolo di ogni suo punto, 
può essere approssimata dal piano tangente a tal punto, la quale però 
non vale globalmente sulla superficie.

Similmente la teoria della relatività generale richiede che le leggi 
della fisica siano invarianti rispetto a trasformazioni generali delle 
coordinate locali (cioè in ogni punto) dello spazio-tempo. Ciò signifi-
ca ammettere che la struttura dello spazio-tempo sia meno rigida di 
quella che avevamo supposto sin qui e sia invece quella di uno spazio 
curvo la cui curvatura sia determinata dall’effetto gravitazionale della 
materia e a sua volta influenzi la distribuzione della materia nell’uni-
verso. 

La relatività generale è la prima teoria fisica in cui la struttura del-
lo spazio-tempo non è data a priori ma va determinata risolvendo un 
sistema di equazioni assai complicate, dette equazioni di Einstein, che 
contengono come incognite le grandezze che determinano la geome-
tria dello spazio-tempo e la sorgente del campo gravitazionale. Secon-
do la teoria della relatività generale, le proprietà geometriche dello 
spazio-tempo, quali la distanza fra due eventi infinitamente vicini, la 
curvatura, ecc., variano in genere da punto a punto, come avviene in 
generale sulle superfici curve. Tali proprietà sono la manifestazione 
geometrica del campo gravitazionale dovuto alla materia: per esem-
pio, la generalizzazione del potenziale gravitazionale di Newton è le-
gata alla distanza fra punti infinitamente vicini, e le forze gravitazio-
nali di marea (cioè la variazione del campo gravitazionale per unità di 
distanza) sono legate alla curvatura dello spazio-tempo. Precisamente, 
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le equazioni di Einstein sono equazioni alle derivate parziali non line-
ari che legano le componenti del tensore metrico gij e le loro derivate 
prime e seconde alle componenti del tensore energia-impulsione Tij 
della materia. 

Due concetti matematici fondamentali per capire la relatività ge-
nerale sono quelli di “trasporto parallelo” e di “connessione”. In ter-
mini intuitivi, il concetto di trasporto parallelo si può descrivere come 
segue. Immaginiamo di spostare un vettore lungo un cammino chiuso 
formato di archi di geodetiche, sotto la condizione che rimanga fis-
so l’angolo tra il vettore e la geodetica lungo la quale si muove. Se si 
esegue l’operazione su di un piano, il vettore ritorna puntato lungo la 
direzione di partenza, ma in uno spazio curvo si ottiene un risulta-
to ben diverso. Sulla Terra esiste, per esempio, un ottante (triangolo 
geodetico equilatero) avente come vertici il Polo Nord, Quito, capitale 
dell’Equador, e Libreville, nello Zaire, e avente come lati l’arco di me-
ridiano Polo Nord-Quito, l’arco di equatore Quito-Libreville e infine 
l’arco di meridiano Libreville-Polo Nord. Gli angoli interni dell’ottante 
valgono π/2. La formula qui sopra si scrive allora come: α + ß + γ – π = 
π/2 = Area/R2. L’area dell’ottante vale quindi πR2/2, ossia l’ottava par-
te dell’area terrestre 4πR2. Partiamo ora dal Polo Nord con il vettore, 
usando la convenzione di Levi-Civita; ritorneremo al Polo Nord con il 
vettore ruotato di π/2. Il risultato ha validità universale: il vettore che 
fa il giro di un triangolo geodetico torna ruotato dell’angolo Area × Cur-
vatura, ossia di un certo difetto angolare ε; in altri termini, il cammino 
non è un invariante conforme. Il vantaggio della nozione di Levi-Ci-
vita sta nella sua validità per cammini chiusi che non sono triangoli 
e che non sono neppure composti da archi di geodetiche. Infine essa 
permette un’immediata applicazione a spazi di dimensione qualsiasi, 
per cui l’uso del triangolo appare assolutamente inadeguato. Cammini 
chiusi che possono deformarsi l’uno nell’altro senza incontrare zone in 
cui esiste curvatura sono equivalenti agli effetti del trasporto parallelo.

La connessione è un oggetto geometrico tra i più importanti dell’a-
nalisi tensoriale; esso fornisce un metodo per valutare la velocità con 
cui i vettori e i tensori variano in modo infinitesimale su una varietà 
riemanniana. L’operatore ∇ dato da ∇duj = Γk

ij dujduk (dove Γk
ij defini-
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scono i simboli di Christoffel, con indici che possono variare da 1 a n) 
prende il nome di connessione di Levi-Civita. Esso viene usato per intro-
durre la nozione di parallelismo, che permette di stabilire quando un 
tensore è costante lungo una curva negli spazi curvi e n-dimensionali 
considerati da Riemann. La struttura indotta dal prodotto scalare ca-
nonico (o forma bilineare simmetrica) è un esempio di metrica riemanniana 
su una varietà, mentre la derivazione di un campo vettoriale (più in ge-
nerale, la derivata covariante) nella direzione data da un altro è un esem-
pio di connessione. Una metrica riemanniana permette di misurare la 
lunghezza di vettori tangenti, la lunghezza di curve e di introdurre la 
distanza fra due punti; una connessione permette di derivare campi 
vettoriali, e in particolare di dare una nozione di campi costanti lungo 
curve (chiamati campi paralleli). Va sottolineato che su ogni varietà si 
possono definire infinite connessioni e infinite metriche riemanniane.

Notiamo, a questo proposito, che nel 1918 Hermann Weyl sviluppò 
la geometria differenziale affine, basata esclusivamente sulla nozione 
di parallelismo e non sulla metrica riemanniana; assumendo il pun-
to di vista della teoria degli invarianti, egli creò nel 1921 la teoria delle 
connessioni proiettive e conformi; in una serie di lavori pubblicati tra 
il 1923 e il 1925, Elie Cartan sviluppò anche la teoria delle connessioni 
affini, proiettive e conformi secondo il punto di vista del Programma 
di Erlangen di Felix Klein, cioè facendo agire un determinato gruppo, 
un gruppo di Lie, sulla varietà; l’associazione dei gruppi di Lie semplici 
e la geometria differenziale delle varietà differenziabili culminò nella 
sua scoperta degli spazi riemanniani simmetrici, i quali offrono una 
naturale generalizzazione della superficie sferica nello spazio euclideo 
e del disco unitario nel piano complesso con la metrica non euclidea di 
Poincaré.

È importante peraltro sottolineare che l’esistenza di una metri-
ca riemanniana o di una connessione con determinate proprietà (in 
particolare riguardanti la curvatura) può avere delle conseguenze sulla 
topologia della varietà; in altri termini, ci può essere una relazione di-
retta tra la curvatura e la topologia globale di una varietà, dotata di una 
metrica riemanniana. Per esempio, la curvatura positiva determina la 
topologia, cioè la forma e le proprietà globali, di certe varietà rieman-
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niane. Si tratta del problema più generale del rapporto tra proprietà 
locali e proprietà globali. Sappiamo che la curvatura di una curva o di 
una superficie si può determinare esaminando soltanto una piccola 
regione intorno a un punto, ma è chiaro che questa nozione di tipo 
locale può influire sull’andamento della curva o della superficie nella 
loro globalità. Per esempio, proprio la curvatura della sfera è responsa-
bile della sua chiusura su se stessa e quindi del fatto che la sua area sia 
finita. Anche la teoria delle geodetiche mette in risalto la differenza tra 
locale e globale. In una regione sufficientemente piccola di una super-
ficie, la geodetica tra due punti è l’unica curva che individua il percorso 
di minima distanza da un punto all’altro; dal punto di vista analitico, si 
tratta della traiettoria di una particella le cui coordinate ui(t) verificano 
le seguenti equazioni alle derivate parziali del secondo ordine, ük + Γk

ij 
uiuj = 0 (k = 1, 2), dove i punti sopra le lettere indicano le derivate rispet-
to a t. Invece, se la regione considerata si aggrandisce (supponiamo 
di gonfiare una palla piatta) si viene a perdere la proprietà di unicità, 
come nel caso della sfera, in cui le geodetiche coincidono con i cerchi 
massimi. Lo studio di altre superfici su cui le geodetiche si richiudono 
su se stesse come nel caso della sfera, dando luogo alla proprietà della 
convessità, rappresenta un problema affascinante con conseguenze in-
tuitivamente assai evidenti per il chiarimento di alcuni problemi fon-
damentali in diversi settori della fisica.

Il teorema di Gauss-Bonnet (la cui prima formulazione si deve a 
Gauss) racchiude l’essenziale degli sviluppi appena ricordati. Un suo 
enunciato più recente e completo (trattato dalla topologia differenziale 
e algebrica) si ottiene dividendo una superficie chiusa ∑ dello spazio 
tridimensionale in un certo numero di triangoli geodetici (questo me-
todo è chiamato triangolazione delle varietà) e sommando il contributo 
dell’espressione ∫TKdA = α+ß+γ–π (dove l’integrale del primo membro 
è approssimato dalla somma dei prodotti della curvatura K per l’area 
di regioni infinitesime) per ciascuno di essi. Ne segue che ∫∑KdA = 2πχ, 
dove il numero χ denota la caratteristica di Eulero di ∑. Quest’ultima 
equazione è la più semplice di una famiglia considerevole di equazioni 
che mettono in relazione la curvatura di un oggetto con la sua topolo-
gia. Si osservi inoltre che essa non cambia quando viene fatta variare la 
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metrica assegnata tramite la prima forma fondamentale della super-
ficie. Dal teorema di Gauss-Bonnet si deduce che la sfera è l’unica su-
perficie chiusa a curvatura gaussiana costante positiva, mentre il toro 
è l’unica superficie chiusa a curvatura identicamente nulla. Esistono, 
invece, molte superfici di curvatura gaussiana costante negativa, che 
presentano una geometria iperbolica. Tra i modelli più noti, citiamo 
la pseudosfera (scoperta da Eugenio Beltrami) formata dalla rotazione 
di una curva particolare, la trattrice, e il semipiano superiore formato da 
tutti i punti (x, y) con y positivo, su cui vale una metrica iperbolica (que-
sto modello è dovuto a Poincaré).

7. Brevi cenni sul ruolo delle simmetrie in meccanica quantistica e nelle 
teorie di gauge

Secondo il grande fisico teorico Werner Heisenberg (1965), 

Il conflitto tra materialismo e idealismo ha segnato l’intera storia della 
filosofia, in particolare la storia della fisica. Questa antitesi è stata resa nuo-
vamente attuale in una forma ben precisa dalla fisica atomica moderna, in 
particolare dalla teoria dei quanta. Fino alla scoperta del quanto d’azione di 
Planck, le moderne scienze naturali esatte, fisica e chimica, erano orienta-
te materialisticamente. Nel secolo decimonono si consideravano gli atomi 
della chimica e le loro parti che oggi chiamiamo particelle elementari come 
ciò che esiste veramente, come il substrato reale d’ogni materia. Sembrava 
che l’esistenza degli atomi fosse una cosa evidente, indubitabile, e che non 
avesse bisogno di spiegazione. Ma Planck aveva svelato nei fenomeni di ra-
diazione un carattere di discontinuità che sembrava collegato in modo sor-
prendente con l’esistenza degli atomi, e che d’altra parte non poteva essere 
spiegata in base alla loro esistenza. Questo carattere, rivelato dal quanto 
d’azione, fece pensare che tanto la discontinuità, quanto l’esistenza degli 
atomi fossero manifestazioni comuni di una legge fondamentale della natu-
ra, d’una struttura matematica insita nella natura, e che la sua formulazio-
ne potesse condurre a un’unificazione delle nostre idee sulla struttura della 
materia. È proprio ciò che avevano tentato i filosofi greci. Dunque l’esistenza 
degli atomi non era forse un fatto primordiale, non suscettibile di ulteriori 
spiegazioni. Quest’esistenza poteva anzi essere ricondotta, come in Plato-
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ne, all’azione di leggi naturali formulabili matematicamente, dunque all’a-
zione di simmetrie matematiche.

In effetti, le leggi delle radiazioni di Planck si distinguevano in un 
modo assai caratteristico dalle leggi naturali formulate in preceden-
za. Se le leggi naturali precedenti, per esempio quelle della meccanica 
di Newton, contenevano delle cosiddette costanti, queste designava-
no delle proprietà di oggetti, per esempio la loro massa o l’intensità 
della forza agente fra due corpi, o cose simili; invece il quanto d’azione 
di Planck, che appare come la costante caratteristica nella sua legge 
delle radiazioni, non rappresenta una proprietà di oggetti ma una 
proprietà della natura. A questa nuova concezione della natura con-
tribuirono la scoperta di Planck (1900) sul corpo nero e il fenomeno 
della radiazione, e la scoperta di Einstein (1905) sul comportamento 
discreto dei fotoni. Il passo successivo furono le prime idee sulla mec-
canica quantistica. Nel 1913, Niels Bohr introdusse due postulati che 
apparivano ingiustificabili nell’ambito della fisica classica: (a) ogni 
atomo è caratterizzato da una successione discreta di livelli energetici 
E1, E2, E3… In condizioni normali, l’atomo si trova nel livello di ener-
gia più bassa E1 ma se viene perturbato, per esempio scaldandolo, può 
portarsi in uno dei livelli eccitati E2, E3,… dai quali dopo brevissimo 
tempo (circa 10–10 s) si ritorna al livello più basso; (b) le frequenze an-
golari vij delle righe spettrali di un atomo sono caratterizzate da una 
coppia (i, j) di numeri interi e sono legate alle energie E1, E2,… dei livelli 
energetici della relazione ħvij = Ei – Ej (Ei > Ej). In questa relazione, ħ 
è la stessa costante introdotta da Planck nello studio dello spettro del 
corpo nero, e da Einstein per interpretare l’effetto fotoelettrico. I po-
stulati di Bohr non trovano spiegazione nella fisica classica secondo la 
quale l’energia può assumere ogni valore e non soltanto valori discre-
ti. L’unica conclusione che si doveva trarre era dunque l’inapplicabilità 
della fisica classica ai fenomeni connessi alla struttura dell’atomo. Bi-
sognava ammettere che, almeno all’interno dell’atomo, «Natura facit 
saltus», e abbandonare il sogno che le leggi scoperte dall’osservazione 
dei fenomeni macroscopici fossero le leggi universali della natura, va-
lide comunque.
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Lo sviluppo della fisica spettrale, grazie a raffinati strumenti d’in-
dagine e delicate apparecchiature, metteva in grado i fisici di osservare 
un mondo fino ad allora del tutto invisibile, una regione della natura 
che, a tutti gli effetti, fino ad allora non esisteva. Era ormai chiaro che 
componenti invisibili e microscopici come elettroni, fotoni, nuclei si 
comportavano in modo molto diverso dagli oggetti del nostro mondo 
macroscopico. Il linguaggio con il quale gli spettri del mondo atomico, 
cioè le righe spettrali, o la curva continua del corpo nero, è assoluta-
mente incomprensibile a chi non conosce quel linguaggio, il quale è 
decodificabile solo attraverso complicati ragionamenti matematici che 
hanno una connessione solo indiretta con l’osservazione fenomenolo-
gica iniziale; ed è percorrendo un lungo cammino di elaborazione e 
comprensione matematica che spesso i fisici giungono a scoprire “te-
sori”, cioè proprietà e comportamenti del mondo fisico di ineffabile 
bellezza.

Un fenomeno spettrale, come quello della distribuzione spettrale 
della radiazione del corpo nero (nel modello teorico che lo descrive si 
riportano sulle ascisse le lunghezze d’onda – proporzionali all’inverso 
della frequenza – in unità di 10–7 m; sulle ordinate l’intensità in unità 
convenzionali; i numeri sulle curve indicano le temperature assolute; 
all’aumentare della temperatura il massimo della distribuzione si spo-
sta verso le lunghezze d’onda minori) è riproducibile sperimentalmen-
te. La natura spettrale fa parte quindi della realtà fisica (cristalli liqui-
di, laser, molecole, ecc.), ed essa presenta una straordinaria varietà e 
un ordine che rimane ancora in gran parte un mistero. 

Sia la relatività ristretta che quella generale hanno avuto ciascu-
na come punto di partenza e come motivazione un solo fatto speri-
mentale: la costanza della velocità della luce per la prima, il principio 
d’equivalenza della massa inerziale e della massa gravitazionale per la 
seconda.

La meccanica quantistica è stata scoperta grazie a una ricca e varia 
fenomenologia disponibile, che andava tuttavia interpretata teorica-
mente e generalizzata matematicamente per acquisire un fondamento 
sicuro. Questo lavoro di generalizzazione teorica lo si deve innanzi-
tutto a Heisenberg, al quale seguì l’opera importante di Dirac, Born e 
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Jordan, preceduti dai risultati già ottenuti da Bohr. Le loro scoperte e 
l’elaborazione teorica della meccanica quantistica rivelò innanzitutto 
che quello che fino ad allora avevamo letto nel “libro della natura” non 
era una descrizione di tutta la natura, ma un modello approssimato 
della natura valido solo nell’ambito dei fenomeni dai quali era stato de-
rivato ma che non potesa essere esteso a priori al di là di tale ambito.

Forse dovremmo rinunciare alla speranza di scoprire «le vrai sy-
stème du monde» (di Laplace). Lo comprese subito Einstein quando, 
al giovane Heisenberg che gli esponeva la sua teoria disse: «Se le sue 
idee fossero giuste dovremmo limitarci a parlare solo di quello che 
conosciamo della natura e non di quello che la natura realmente fa». 
Heisenberg non rinunciò a cercare di capire “quello che la natura re-
almente fa”, a una nuova possibilità di pensiero. Per questo bisogna 
partire dalla consapevolezza, secondo il fisico tedesco, che «l’estensio-
ne dell’indagine scientifica a nuovi campi di esperienza avviene ben 
diversamente che applicando ad oggetti nuovi i principi precedente-
mente noti». Si trattava di cambiare questi stessi principi. Il muta-
mento che occorreva introdurre nella meccanica classica non era una 
modifica delle leggi del moto, quanto piuttosto la rinuncia a qualche 
concetto fondamentale. L’ispirazione gli venne da un esame della rela-
tività d’Einstein. Scrive Heisenberg: 

Il centro della relatività speciale è la constatazione che la contemporaneità 
di due eventi in differenti luoghi è un concetto problematico. Similmente per 
la teoria dei quanti è della massima importanza la constatazione che non è 
sensatamente possibile parlare simultaneamente di una precisa posizione e 
di un preciso impulso di una particella. 

È questo il contenuto del principio di indeterminazione, che Hei-
senberg espose in un fondamentale lavoro del 1927 (“Über die anschau-
lichen Inhalt der quantentheoretische Kinematik und Mechanik”, 
Zeitschrift für Physik), uno dei testi classici della letteratura scientifica 
del Novecento. In questo articolo Heisenberg dedusse dal formalismo 
della meccanica quantistica, che egli stesso aveva introdotto due anni 
prima, il significato fisico e intuitivo (anschaulich Ihnalt) della nuova 
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meccanica. Formalmente il principio d’indeterminazione è espresso 
dalla celebre diseguaglianza 

∆q . ∆p ≥ ½ ħ/2π,

dove ∆q e ∆p sono rispettivamente l’incertezza nella misura della po-
sizione (spaziale) q e quella della misura dell’impulsione p di una par-
ticella (che è una variabile temporale). La diseguaglianza non dice che 
non si possa misurare con assoluta precisione la posizione q o la com-
ponente dell’impulso p (l’impulso è il prodotto della massa per la velo-
cità). Afferma solo che non si può raggiungere una precisione infinita 
nella misura contemporanea di q e p: infatti, tanto più precisa è una 
delle due misure, tanto più imprecisa è l’altra.

È corretto dire che l’apparizione di questo principio sulla scena 
della fisica ha contribuito a rimettere profondamente in questione la 
concezione della natura che aveva dominato le scienze per più di tre 
secoli. Ha significato la fine dell’illusione di poter raggiungere una co-
noscenza completa (e assolutamente certa) della natura, o quella che 
si credeva dovesse essere una conoscenza completa, e quindi la fine 
di una previsione sicura dell’evoluzione futura di un sistema fisico. 
Ricordiamo infatti che, secondo la meccanica classica, il calcolo del-
la traiettoria di una massa puntiforme richiede la conoscenza esatta 
della sua posizione e del suo impulso all’istante iniziale, proprio quella 
conoscenza che il principio di indeterminazione nega possa essere mai 
raggiunta. Il determinismo di Laplace che garantiva di poter predire 
l’avvenire dell’universo dalla conoscenza della posizione e della velocità 
iniziali risulta incompatibile con il risultato di Heisenberg. Tuttavia, 
già Poincaré (nei suoi lavori matematici fondamentali sulla meccanica 
celeste apparsi tra il 1892 e il 1899) mostrò che il determinismo laplacia-
no andava rimesso in questione se si voleva avere una conoscenza più 
estesa della natura e una comprensione profonda e più completa delle 
sue proprietà, per esempio se si voleva capire il comportamento di un 
sistema dinamico a tre corpi (Sole, Terra, Luna) e molti altri fenomeni 
fisici in cui la complessità cresce con l’aumentare delle variabili e degli 
effetti perturbativi. 
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Per ritornare agli sviluppi della meccanica quantistica, è importan-
te sottolineare che per elaborare il suo teorema d’impossibilità delle 
teorie a variabili nascoste, Bell era partito dal riconoscimento dell’im-
portanza del carattere intrinsecamente non locale della teoria di David 
Bohm: in essa la traiettoria di una particella localizzata in una regione 
dello spazio può dipendere istantaneamente da quel che accade in un 
luogo da lei arbitrariamente lontano. La non località che appare nella 
trattazione causale di Bohm del paradosso EPR (Einstein, Podolsky e 
Rosen) non è un difetto del modello teorico, ancora parziale, non es-
sendo relativistico, ma una caratteristica necessaria che ogni teoria a 
variabili nascoste in grado di riprodurre perfettamente il formalismo 
quantistico deve contenere. Il ragionamento di Bell dimostra che se si 
effettuano due misure su due sistemi fisici (ad esempio una coppia di 
particelle di spin ½ che si muovono liberamente in direzioni opposte 
ad ognuna delle quali si associa un apparato che permette di misurare 
le componenti dello spin) che corrispondono a due eventi spazialmen-
te separati, allora l’orientazione di uno degli apparati influenzerà il ri-
sultato della misurazione eseguita dall’altro apparato. Risulta dunque 
impossibile predire con certezza il risultato di una qualunque delle 
componenti dello spin di una delle particelle da una misura della stes-
sa componente dell’altra particella, in quanto la funzione quantomec-
canica ψ non determina il risultato di una osservazione individuale. 
L’idea della non località quantistica, che viola il cosiddetto principio di 
località (di Einstein), secondo il quale non è ragionevole pensare che un 
dato fenomeno fisico possa avvenire indipendentemente dalla distan-
za dall’evento che lo ha causato, è che sia invece l’interazione tra i due 
sistemi fisici che conta, perché grazie ad essa le due rappresentazioni 
(ossia gli stati quantici delle due particelle) sono diventati aggrovigliati 
(entangled).

La definizione di questo importante fenomeno fu data per la pri-
ma volta da Erwin Schrödinger nel 1935 come commento al paradosso 
EPR: 

Quando due sistemi, dei quali conosciamo i rispettivi stati, interagisco-
no temporaneamente mediante forze note, e quando dopo un periodo di in-
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fluenza mutua si separano nuovamente, essi non possono più essere descritti 
come prima, cioè attribuendo a ciascuno di essi un suo stato caratteristico. 

Secondo Schrödinger, l’entanglement è il tratto caratteristico del-
la meccanica quantistica, il cui significato filosofico peculiare risiede 
nell’idea di non località delle interazioni tra le particelle; e, si potrebbe 
aggiungere, d’indiscernibilità delle particelle che interagiscono; l’og-
getto della fisica non è più la particella isolata, ma l’interazione tra due 
o più particelle e l’intreccio che così esse formano; il processo di inte-
razione modifica l’azione e lo stato delle particelle. Ad esempio, l’inte-
razione gravitazionale tra materia oscura e materia ordinaria modella 
il cosmo in una ragnatela di galassie; gli scambi e le collisioni tra le 
diverse forze quantistiche sembra modellare lo spazio-tempo alla scala 
di Planck in una struttura ripiegata e annodata estremamente com-
plessa e dinamica.

Il principio d’indeterminazione (chiamato anche “relazioni d’in-
certezza”) stabilisce un limite fenomenologico all’indipendenza del 
sistema fisico dall’osservatore e dall’osservazione, le due cose vanno 
distinte ma non sono più separabili, quantomeno a livello microsco-
pico; infatti, si osserva un’intricazione quantistica tra il sistema fisico e 
il sistema di osservazione e di misura impiegato dall’osservatore (dal 
fisico). Chiariamo questo concetto con un esempio. Consideriamo due 
sistemi fisici apparentemente simili, eccetto che uno è macroscopico e 
l’altro è microscopico: un pianeta che si muove nel campo gravitazio-
nale del Sole e un elettrone che si muove nel campo coulombiano di un 
protone (cioè un atomo di idrogeno). Il campo di forza che agisce nei 
due casi ha la stessa dipendenza dalla distanza – pianeta-Sole o elet-
trone-protone –: in ambedue i casi la forza è inversamente proporzio-
nale al quadrato della distanza f = – 1/d2. La differenza tra i due casi sta 
nel fatto che il sistema planetario (macroscopico) resta essenzialmente 
indisturbato dall’osservazione, mentre l’atomo d’idrogeno (microsco-
pico) è alterato o perturbato in maniera essenziale. Heisenberg ha in-
fatti dimostrato che per osservare l’orbita di un elettrone in un atomo 
dovremmo usare una radiazione di frequenza, e quindi d’impulso, così 
grande che l’elettrone verrebbe espulso dall’atomo. Il concetto di orbita 
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di un elettrone in un atomo, diversamente dal concetto classico di or-
bita di un grave terrestre o di un corpo celeste, non ha dunque senso 
perché è inosservabile.

Ma questo significa per Heisenberg, e secondo la meccanica quan-
tistica, che ha senso solo ciò che è osservabile tramite un apparato di 
osservazione e di misura? Eppure noi sappiamo che ci sono molti fe-
nomeni, soprattutto alla scala subatomica di Planck e anche a quella 
dell’intero Universo, che non sono ancora mai stati osservati ma che 
tuttavia hanno un senso all’interno del modello o della teoria fisica in 
cui sono stati pensati. 

Un altro aspetto importante è che la struttura matematica del-
la fisica classica differisce da quella della meccanica quantistica. 
Quest’ultima mostra il ruolo fondamentale che i concetti e le strut-
ture matematiche svolgono per la spiegazione del mondo fisico, e 
quindi, si presume, nel comportamento reale dei fenomeni fisici. Tre 
concetti matematici avranno un ruolo fondamentale per gli sviluppi 
teorici prima della meccanica quantistica poi delle teorie dei campi 
quantistici: quello di spazio d’operatori di Hilbert a un numero infi-
nito di dimensioni, quello di non commutatività e quello di gruppo 
di Lie non abeliano (un gruppo non abeliano è per definizione non 
commutativo). 

Dal punto di vista fenomenologico, un sistema fisico è descritto, sia 
in meccanica classica che quantistica, dalla misura di grandezze fisi-
che ognuna delle quali corrisponde a un ben determinato strumento 
di misura. Chiameremo «osservabile» l’oggetto matematico che rap-
presenta un particolare strumento di misura, e chiameremo «stato» 
del sistema l’oggetto matematico che determina i valori medi degli 
osservabili. Consideriamo il più semplice sistema fisico, cioè una par-
ticella che si muove lungo una retta in un potenziale dato, per esempio 
un oscillatore. Questo sistema è descritto da due grandezze fisiche, la 
posizione q e l’impulso p. Ogni altra quantità, l’energia per esempio, è 
una grandezza di q e di p. Chiaramente gli osservabili q e p sono ogget-
ti matematici molto diversi a seconda che li si consideri in meccanica 
classica o in meccanica quantistica. Secondo la meccanica classica, q 
e p possono essere ambedue misurati con infinita precisone ad ogni 
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istante, e sono così rappresentabili come funzioni continue e differen-
ziabili del tempo (o rispetto al tempo). 

I valori di q e p a un dato istante determinano completamente lo 
stato del sistema classico. La situazione in meccanica quantistica è 
diversa. Infatti il principio di indeterminazione ci dice che q e p non 
possono essere misurati contemporaneamente con infinita precisione 
e che il prodotto delle loro incertezze soddisfa il principio d’indeter-
minazione di Heisenberg. La dimostrazione data dal fisico tedesco di 
questa relazione implica che la posizione q e l’impulso p non possono 
essere rappresentati da oggetti matematici il cui prodotto commuti, 
cioè tali che il prodotto qp sia uguale a pq come avviene per i numeri 
reali (invertendo l’ordine dei fattori il risultato non cambia) o per le 
funzioni reali del tempo della meccanica classica. Questi oggetti mate-
matici richiedono che s’introduca una geometria e un’algebra diverse 
al fine di poter caratterizzare le principali proprietà di una matematica 
e fisica non commutative. 

L’immaginazione matematica non è senza legami con il mondo fisi-
co e i fenomeni naturali, anzi essa ha permesso in molti casi di scoprire 
strutture matematiche nuove che si sono rivelate essere fondamentali 
per la comprensione delle proprietà dei fenomeni fisici. È il caso del-
le simmetrie o gruppi trasformazione, ed è il caso anche, come dice-
vamo prima, della non-commutatività che svolge un ruolo essenzia-
le in meccanica quantistica e nelle teorie quantistiche dei campi. Già 
nella seconda metà dell’Ottocento, Hamilton, Cayley e in particolare 
Clifford avevano scoperto delle entità matematiche per le quali si può 
definire un prodotto non commutativo. Un esempio di tali entità sono 
le trasformazioni di un gruppo come l’insieme delle rotazioni e delle 
traslazioni nel piano, ma ce ne sono diversi altri, ad esempio le matrici, 
per le quali si può definire la somma: quest’ultima è commutativa, cioè 
a+b = b+a, mentre il prodotto non lo è, cioè ab è diverso da ba. L’insieme 
di tali entità o strutture matematiche, opportunamente definite, viene 
chiamata algebra non commutativa (o non abeliana). 

Ritornando a Heisenberg, egli ha dimostrato che se si definisce il 
prodotto delle p e delle q con la relazione qp – pq = i ħ/2π2, dove h è la 
costante di Planck, e i = √-1, e se si definiscono opportunamente le 
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incertezze ∆p e ∆q, si ottiene il famoso principio di indeterminazione 
∆p . ∆q ≥ ½ ħ/2π. Naturalmente anche lo stato del sistema non può es-
sere rappresentato dai valori di p e q poiché questi non possono essere 
misurati simultaneamente. Lo stato potrà esprimere solo la probabili-
tà che q e p abbiano determinati valori. La probabilità, nel senso di un 
qualcosa per il quale non c’è nessuna certezza che accada ma solo una 
certa possibilità, diviene un elemento essenziale della teoria fisica e, 
in questo senso, il determinismo della meccanica classica perde la sua 
validità. Tuttavia l’evoluzione temporale dello stato è retta, come ha 
dimostrato E. Schrödinger, da un’equazione deterministica, la famosa 
equazione di Schrödinger.

Si possono qui menzionare due tipi di problemi, che furono già di-
scussi in passato soprattutto dai filosofi greci, sollevati nuovamente 
dalla teoria dei quanti di Planck e la sua scoperta della natura discon-
tinua della materia, degli elettroni. Il primo di questi problemi con-
cerne l’essenza della materia. Per essere storicamente più precisi, si 
tratta dell’antico problema dei filosofi greci, ossia la ricerca di come 
sia possibile ricondurre a principi semplici, a concetti intelligibili, la 
varietà multiforme dei fenomeni che si verificano nel mondo materiale 
(fisico). L’altro aspetto riguarda un problema epistemologico che si è 
posto ripetutamente, in modo particolare da Kant in poi: ci si doman-
da fino a che punto sia possibile dare un significato oggettivo a ciò che 
osserviamo nella natura o, in genere, a ciò che cade sotto i nostri sensi. 
In altre parole, si tratta di determinare un fatto oggettivo che accade 
indipendentemente dall’osservatore, partendo dai fenomeni osserva-
ti. Kant aveva parlato delle “cose in sé”, che il filosofo riteneva incono-
scibili in termini oggettivi e intersoggettivi. Nella teoria dei quanti il 
problema riguardante il substrato oggettivo dei fenomeni è stato posto 
in un modo nuovo e inaspettato.

La scoperta del quanto d’azione di Planck introduce un problema 
fondamentale della fisica, quello dell’ordine di grandezza o della sca-
la alla quale si producono i fenomeni. La scoperta fatta da Planck del 
quanto d’azione, che appare come costante caratteristica delle sue leg-
gi delle radiazioni, non rappresenta una proprietà di oggetti ma una 
proprietà della natura, stabilisce una distinzione nella scala di gran-
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dezze che si osserva nella natura, e perciò mostra nello stesso tempo 
che, in ambienti in cui gli effetti risultano molto grandi di fronte al 
quanto d’azione di Planck, i fenomeni naturali hanno un decorso di-
verso da quelli in cui gli effetti sono dell’ordine di grandezza dell’ato-
mo, dunque del quanto di Planck. Mentre le leggi della fisica classica, 
per esempio della meccanica di Newton, dovevano in principio avere lo 
stesso valore per tutti gli ordini di grandezze (il movimento della Luna 
intorno alla Terra doveva verificarsi con le stesse leggi che la caduta di 
una mela dall’albero o la deviazione di una particella alfa che vola via 
rasentando il nucleo di un atomo), la legge delle radiazioni di Planck 
mostrava per la prima volta che ci sono in natura distinzioni secondo 
scale di grandezze. In altri termini, essa mostrava che fenomeni che 
avvengono a scale spaziali ed anche temporali e di livelli di energia 
diversi, non sono dello stesso tipo, anche se possono esserci delle re-
lazioni e delle strutture fondamentali di tipo matematico e fisico com-
muni o quantomeno simili a tutti questi fenomeni. Da qui l’idea che la 
varietà e complessità della natura e del mondo fisico (per esempio le 
diverse transizioni di fase della materia) possa essere retta da qualche 
simmetria fondamentale (che inglobano altre simmetrie più parziali) 
e da uno spazio topologico generale la cui struttura spiega l’esistenza 
di strutture diverse.

Già pochi anni dopo la scoperta di Planck fu compreso il significato 
di una seconda “costante di misura”. La teoria della relatività speciale 
di Einstein rese chiaro ai fisici che la velocità della luce non rappresen-
ta la qualità di una materia speciale, l’“etere”, a cui doveva incombere la 
propagazione della luce (come si era congetturato a suo tempo nell’e-
lettrodinamica), ma una qualità dello spazio e del tempo, dunque una 
qualità affatto generale della natura indipendente dagli oggetti specia-
li che ne fanno parte. Perciò anche la velocità della luce può essere con-
siderata come una costante naturale, relativa alle scale di grandezze. I 
nostri concetti intuitivi di spazio e di tempo possono essere applicati 
a quei fenomeni in cui si presentano delle velocità piccole in confronto 
alla velocità della luce. Inversamente i noti paradossi che si riferiscono 
alla relatività si basano proprio sul fatto che fenomeni in cui interven-
gono velocità vicine a quella della luce non possono essere interpretati 
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coi nostri concetti comuni di spazio e di tempo. Un esempio è il noto 
paradosso degli orologi, ossia il fatto che, per un osservatore che si 
sposti velocemente, il tempo scorre in apparenza più lentamente che 
per un osservatore in quiete. 

I lavori di Bohr, Kramers e Slaletr (1924), secondo i quali il campo 
d’onde elettromagnetico, a cui sono dovuti in modo tanto evidente i 
fenomeni d’interferenza e di diffrazione, determina solo la probabi-
lità che un atomo assorba o emetta per quanti (dunque per pacchetti 
discreti di fotoni) l’energia luminosa nella regione dello spazio consi-
derata, contenevano l’idea d’importanza decisiva che le leggi naturali 
non determinano il verificarsi di un avvenimento, ma la probabilità 
che esso si verifichi; che inoltre questa probabilità deve essere messa 
in relazione con un campo d’onde che ubbidisca a un’equazione d’onde 
formulabile matematicamente.

Si tratta di una specie di stato intermedio di verità che sta in mez-
zo tra la verità massiccia della materia e la verità astratta dell’idea o 
dell’immagine. Nella teoria moderna dei quanti questo concetto di 
possibilità assume una nuova veste: è formulato quantitativamente 
come una probabilità e sottomesso a leggi naturali esprimibili mate-
maticamente. Le leggi naturali formulate in termini matematici non 
determinano più i fenomeni stessi ma la loro possibilità, la probabilità 
che succeda qualche cosa. 

Nella fisica moderna (quantistica) si ammette che la determinatezza 
dei fenomeni esiste solo in quanto essi sono descritti con i concetti della 
fisica classica. L’applicazione di questi concetti è limitata, d’altra parte, 
dalle cosiddette relazioni d’indeterminazione; queste contengono del-
le restrizioni quantitative sui limiti posti all’applicazione dei concetti 
classici. 

Scrive Heisenberg: 

Con ciò si compiva un distacco decisivo della fisica classica e si ritornava 
in ultima analisi a una concezione che aveva già assunto una grande impor-
tanza nella filosofia di Aristotele. Le onde di propabilità di Bohr, Kramers, 
Slater possono essere interpretate come una formulazione quantitativa del 
concetto aristotelico di dinamica, di possibilità, chiamato anche più tardi col 
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nome latino potentia. L’idea che quanto succede non sia determinato in modo 
perentorio e definitivo, ma che già la possibilità o tendenza al verificarsi di un 
fatto possieda una specie di verità, ha nella filosofia di Aristotele una parte 
decisiva. 

8. Gruppi e teorie di gauge, invarianza locale e interazioni fisiche

Hermann Weyl sviluppò un approccio per lo studio della meccanica 
quantistica interamente basato sul concetto matematico di gruppo. 
La questione fondamentale che egli si pone in quegli anni (1930-35) è 
di capire che la spiegazione delle proprietà fondamentali delle parti-
celle può essere ricondotta allo studio più generale delle proprietà di 
simmetria delle leggi quantistiche. Da un punto di vista matematico 
ciò comporta che si conosca la struttura di certe classi di gruppi di 
Lie compatti e le loro rappresentazioni algebriche. Dal punto di vista 
fisico, si tratta di capire se le proprietà delle particelle soddisfano le 
simmetrie fondamentali che si conoscono, vale a dire destra/sinistra, 
passato/futuro, carica (elettrica) positiva/carica (elettrica) negativa. 

La generalizzazione non lineare delle equazioni di Maxwell alla 
spiegazione delle proprietà delle particelle elementari ha richiesto 
l’introduzione di diversi tipi di simmetria: (i) simmetrie esterne o spa-
zio-temporali, ovvero i gruppi di Lorentz, di Poincaré e il gruppo con-
forme – nel caso di massa a riposo nulla; (ii) le simmetrie interne, cioè 
i gruppi SU(2) o SU(3) per certe proprietà delle particelle elementari; 
(iii) le simmetrie di covarianza, ovvero la possibilità di combinare certe 
proprietà quantiche delle particelle elementari con la gravitazione in 
uno spazio curvo che possiede determinate proprietà topologiche.

Nell’elettrodinamica quantistica l’operazione di simmetria consi-
ste in un cambiamento di fase del campo dell’elettrone, cosicché una 
di queste fasi si trova associata a un’interazione con il campo elettro-
magnetico. Possiamo così immaginare un elettrone sottomesso a due 
cambiamenti di fase consecutivi: l’emissione di un fotone, poi il suo 
assorbimento. Si verifica che la sequenza secondo la quale si produ-
cono tali cambiamenti di fase sono invertiti, per cui un fotone viene 
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prima assorbito, poi emesso: il risultato finale sarà quindi lo stesso. 
Ne risulta che una serie infinita di cambiamenti di fase può essere ef-
fettuata e il risultato finale sarà semplicemente la somma algebrica di 
tutti i cambiamenti indipendentemente dall’ordine in cui la sequenza 
è stata effettuata. Invece, nella teoria di Yang-Mills (su cui ritorneremo 
tra poco), dove l’operazione di simmetria è una rotazione locale dell’i-
sospin, il risultato di più operazioni può essere diverso. Supponiamo 
un adrone (una particella subatomica composta da quark e antiquark 
legati dalla forza nucleare forte) soggetto a una trasformazione, B, 
dopo una serie di trasformazioni (cioè un cambiamento di simmetria), 
la particella avrà un’orientazione corrispondente a quella di un proto-
ne (una particella subatomica di carica elettrica positiva che insieme 
al neutrone è un costituente del nucleo atomico). Supponiamo ora di 
applicare la stessa trasformazione all’adrone ma secondo un ordine in-
verso, cioè prima B e poi A. In generale, lo stato finale in cui si troverà 
la particella non sarà lo stesso di quello precedente: la nuova particella 
potrà essere un neutrino7 invece di un protone. Il risultato delle due 
trasformazioni dipende dunque dall’ordine nel quale esse vanno ese-
guite. 

Il concetto di simmetria svolge un ruolo fondamentale nelle teorie 
di gauge in fisica teorica. Le nuove teorie di gauge furono elaborate 
da Yang e Mills negli anni 50 del secolo scorso (il primo lavoro impor-
tante è del 1954), al seguito dei primi tentativi fatti da Hermann Weyl 
per introdurre una geometria locale più generale rispetto a quella ri-
emanniana capace di inglobare in un modello esplicativo unitario al-
cune proprietà fondamentali dei campi quantistici. La teoria di Yang 
e Mills offre un modello geometrico per spiegare le interazioni forti e 
per comprenderne gli effetti quantistici. La sua principale caratteri-
stica è di ammettere come gruppo di invarianza un gruppo di Lie non 
abeliano, che è il più “semplice” dei gruppi non commutativi. Questa 

7	 Il neutrino è una particella priva di carica elettrica e con una massa estremamen-
te piccola, che non si è ancora riusciti a misurare. I neutrini interagiscono molto 
raramente con la materia; possono infatti attraversare praticamente indisturbati 
enormi spessori di materia.



Luciano Boi

232

proprietà matematica del gruppo di simmetrie conferisce alla teoria 
una struttura molto ricca e permette di trovare delle equazioni di cam-
po più generali di quelle di Maxwell. Già questo mostra a sufficienza il 
ruolo fondamentale che hanno le simmetrie geometriche nella com-
prensione dei problemi di fisica studiati dalle teorie di gauge. 

Conviene ricordare che già nella teoria proposta da Weyl nel 1929 
appare, in più delle variabili di posizione nello spazio-tempo, un pa-
rametro di spazio interno sul quale il gruppo di fase agisce. Il campo 
che s’identifica alla funzione d’onda della particella può dunque essere 
visto come se associassimo a ogni punto dello spazio-tempo un punto 
dello spazio di configurazione interna, che nel caso dell’elettromagne-
tismo è un angolo. Una gauge esige allora che si combinino le coordi-
nate dello spazio-tempo con i parametri dello spazio fisico interno. La 
teoria di Weyl soddisfa un principio “d’invarianza locale”; in altre paro-
le, le equazioni di campo restano invariate quando si applica una serie 
di trasformazioni o di simmetrie al sistema fisico. Gli sviluppi delle 
teorie di gauge mostrano chiaramente che le proprietà fondamentali 
delle particelle e delle loro interazioni dipendono essenzialmente dalla 
conoscenza di alcuni gruppi di simmetria. In affetti, l’idea più impor-
tante delle teorie di gauge è quelle di simmetria: vale a dire l’idea che 
un “oggetto” o una “quantità” fisica, alla scala quantica, è simmetrico 
se possiamo applicargli una trasformazione che conserva la sua strut-
tura. Per esempio, possiamo applicare una rotazione di 60° a un fiocco 
di neve senza modificare la sua forma. Si può anche farlo ruotare di un 
angolo multiplo di 60° o applicargli più trasformazioni successive e il 
risultato sarà lo stesso. Una situazione che si incontra di frequente è 
che più trasformazioni differenti (per esempio rotazioni e traslazioni) 
lasciano un oggetto invariato: si dirà allora che l’insieme di queste tra-
sformazioni possiede una struttura matematica di gruppo e forma il 
gruppo di simmetrie dell’oggetto. 

Sono soprattutto i gruppi continui, come i gruppi di Lie, che ap-
paiono nella teoria quantistica dei campi. Le trasformazioni di questi 
gruppi dipendono da uno o più parametri che variano in modo conti-
nuo: è il caso, per esempio, del gruppo di rotazioni di uno spazio a tre 
dimensioni, i cui parametri sono i tre angoli di Eulero. La struttura 
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matematica dei gruppi di Lie è molto ricca ed è per questo che hanno 
un ruolo importante in fisica: infatti, ad ogni gruppo continuo di sim-
metrie corrisponde una legge di conservazione di una quantità fisica. 
Questa proprietà fondamentale del mondo fisico è l’essenza del teore-
ma di Emmy Nother. La conservazione dell’energia corrisponde all’in-
varianza della teoria rispetto alle rotazioni nello spazio. La fisica e la 
geometria si trovano ad essere profondamente legate, a far parte dello 
stesso processo di trasformazione della materia e di organizzazione 
del mondo fisico a diverse scale e livelli. 

Le leggi di conservazione hanno un’importanza fondamentale nello 
studio dei sistemi fisici. Diremo che una teoria (che è innanzitutto un 
modello di un sistema fisico) presenta una simmetria globale se rimane 
invariata rispetto all’azione delle trasformazioni di un gruppo, a con-
dizione che la stessa trasformazione sia simultaneamente applicata a 
tutti i punti dello spazio. Diremo, invece, che la simmetria è locale se la 
trasformazione agisce diversamente in ogni singolo punto. Poiché si 
suppone generalmente che lo spazio sia continuo, è piuttosto naturale 
che siano i gruppi continui, o gruppi di Lie, a svolgere un ruolo prepon-
derante nelle teorie caratterizzate da una simmetria locale. Diversa-
mente da ciò che si sarebbe portati a pensare, l’esigenza di soddisfare 
una simmetria locale è molto più vincolante rispetto alla simmetria 
globale: mentre quest’ultima è, per così dire, autosufficiente, nel caso 
della simmetria locale è necessario aggiungere un elemento alla teoria, 
ovvero un campo, ed è per questo che si richiede alla teoria di possede-
re una simmetria locale.

Per meglio arrivare a riconoscere la natura intrinseca delle simme-
trie nella teoria quantistica dei campi, che come abbiamo visto pos-
sono essere sia di natura locale sia di natura globale, occorre avere 
un’idea sufficientemente chiara delle proprietà topologiche, globali e 
locali, dello spazio (o della varietà) in cui si suppone “esistano” e agi-
scano le particelle alla scala di Planck. In altre parole, la conoscenza 
della struttura topologica dello spazio fisico potrebbe permettere non 
solo di identificare l’esistenza di nuove simmetrie in più di quelle che 
già si conoscono, ma anche la presenza di nuovi campi fisici prodotti 
dall’azione di queste altre simmetrie.
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D’altra parte, come abbiamo rimarcato sopra, la simmetria locale 
di certe teorie fisiche, come ad esempio l’elettrodinamica quantistica, 
può essere ripristinata aggiungendo un nuovo campo alla teoria, così, 
ad esempio, l’elettrodinamica quantistica risulta dalla combinazione 
del campo materiale di elettroni con il campo elettromagnetico; men-
tre, invece, nella relatività generale questo campo è naturalmente quel-
lo della gravità.

L’elettromagnetismo di Maxwelll e la relatività generale di Einstein 
ammettono entrambe una simmetria di gauge locale. In quest’ultima, 
la simmetria non è associata a un campo che si propaga attraverso lo 
spazio, ma alla struttura dello spazio-tempo stesso, vale a dire alla sua 
geometria, e in realtà (questo lo si è capito più tardi) anche alla sua 
topologia, la quale può generare effetti fisici anche in assenza di campi 
gravitazionali forti. Diversamente dalle due teorie appena menziona-
te, la prima teoria di gauge per le interazioni forti, proposta da Yang e 
Mills nel 1954, ammetteva una simmetria globale. Il problema che su-
bito allora si pose era di capire quali conseguenze potessero sorgere se 
si cambiava la simmetria globale in una simmetria locale. Quello che 
succede in questo caso, come in altri casi, è che l’invarianza locale si 
conserva solo se si aggiungono nuovi campi alla teoria. Più precisa-
mente, quando la rotazione dell’isospin avviene diversamente in ogni 
singolo punto (cioè non è la stessa per l’intero spazio) le leggi della fisi-
ca rimangono invariate se si aggiungono nove nuovi campi. 

Una delle più importanti caratteristiche della fisica contemporanea 
è di aver geometrizzato le forze. I primi tentativi risalgono a Riemann, 
Clifford e Poincaré8. In realtà, essi fanno parte di un programma più 
generale di geometrizzazione della matematica e della fisica portato 

8	 Per una ricostruzione concettuale degli sviluppi di tale programma, cfr. i nostri 
seguenti lavori: Luciano Boi, Le problème mathématique de l’espace. Une quȇte de 
l’intelligible, prefazione di René Thom, Heidelberg-Berlin, Springer-Verlag, 1995; 
Luciano Boi, L’espace, concept abstrait et/ou physique; la géométrie entre formalisation 
mathématique et étude de la nature, in Luciano Boi, Dominique Flament, Jean.Michel 
Salanskis (eds.), 1830-1930: A Century of Geometry, History, Mathematics and Epistemo-
logy, History and Mathematics, Lecture Notes in «Physics», vol. 402, Heidelberg, 
Springer-Verlag, 1992, pp. 63-90. 
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avanti da Einstein, E. Cartan e Weyl nella prima metà del secolo scor-
so. Seguendo approcci diversi, tutti e tre hanno mostrato che potevano 
darsi i principi matematici di una teoria più generale rispetto a quella 
riemanniana atta a spiegare i fenomeni fisici come tipi di eventi defi-
niti in un determinato modello di spazio-tempo. 

Dopo i lavori fondamentali di Riemann, Clifford e Poincaré in ma-
tematica e in fisica, la relatività generale ha costituito la prima realiz-
zazione importante di questo programma di geometrizzazione. La sua 
proprietà matematica fondamentale è di ammettere, per i fenomeni 
fisici alla scala dell’universo, un gruppo di simmetria rispetto al quale le 
loro leggi si conservano invariate. Si tratta del gruppo di diffeomorfismi 
che lascia invariata la forma quadratica, cioè la metrica, di una varietà 
pseudoriemanniana di dimensione 4. Più precisamente, si può effet-
tuare una trasformazione qualsiasi del sistema di coordinate nell’intor-
no di un punto dato in questo stesso spazio-tempo senza che le leggi 
fisiche ne risultino modificate. Possiamo affermare, in un certo senso, 
che la scelta delle coordinate è arbitraria (o che è una convenzione teo-
rica). Ma la struttura geometrica dello spazio-tempo, caratterizzato in 
questo caso da una metrica pseudoriemanniana di tipo iperbolico, non 
è affatto arbitraria. L’elemento forse più significativo della relatività ge-
nerale è di aver fornito una descrizione unitaria dello spazio, del tempo 
e della gravitazione. Secondo questo modello, lo spazio-tempo è una 
varietà di dim. 4, M, con una metrica gμν di signatura (3, 1), la cui connes-
sione rappresenta la forza di gravità. In altre parole, la gravità è “portata” 
da un campo connessione simmetrico: da un oggetto dunque di natura 
essenzialmente geometrica. In effetti Einstein era partito dall’ipotesi 
che ogni fenomeno fisico poteva essere associato a un tensore T, che 
chiama tensore d’energia, il quale verifica le due equazioni

Tμν ≡ Tνμ

∆T ≡ 0.

Ciò ha permesso di stabilire l’identità tra il tensore di energia e il ten-
sore metrico (o di Riemann); quest’ultimo può essere definito secondo 
un principio variazionale e nell’equazione appare come la grandezza 
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coniugata della connessione riemanniana (M, g). La legge fondamentale 
della relatività generale si esprime attraverso l’equazione di Einstein

Rμν  –1/2 gμν R = 8π Tμν ,

dove Rμν e R sono, rispettivamente, la curvatura di Ricci e la curvatura 
scalare di gμν, e Tμν è il tensore d’energia della materia. In assenza di 
materia, l’equazione di Einstein per la varietà spazio-tempo si scrive

Rμν = 0.

Certi sviluppi recenti della fisica teorica mostrano che la struttu-
ra geometrica dello spazio-tempo alla scala quantica potrebbe essere 
all’origine non solo del comportamento cinematico, ma anche di quello 
dinamico dei fenomeni fisici che si generano in esso. Sappiamo che ciò 
è vero per il campo gravitazionale, il quale secondo la relatività generale 
è determinato dalla struttura geometrica dello spazio-tempo e in par-
ticolare dalla sua curvatura, ma, in più, anche gli altri campi di materia 
sembrano essere suscettibili di un’interpretazione geometrica. Ed è in 
ciò, infatti, che risiede il significato essenziale delle teorie di gauge. La 
teoria delle corde (e supercorde) sviluppa la stessa idea fondamenta-
le arricchendola di nuove strutture matematiche, poiché essa cerca di 
mostrare che i diversi campi di materia hanno verosimilmente un’ori-
gine geometrica comune, o che si costituiscono a partire dalla struttura 
geometrica e topologica stessa come manifestazioni delle sue fluttua-
zioni e dei suoi cambiamenti. Cosicché, secondo la teoria delle corde i 
campi e le interazioni tra le diverse forme di materia alla scala di Planck 
e a bassissime energie emergerebbero dalla geometria (e dalla topolo-
gia) nello stesso modo in cui la gravità risulta dalla geometria (metrica e 
curvatura) dello spazio-tempo a scala macroscopica dell’universo.

Riassunto  Appoggiandosi su idee e risultati ottenuti da diversi autori nei secoli prece-
denti e in particolare sulla rivoluzione astronomica esposta da Nicolò Copernico nel De 
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revolutionibus orbium cœlestium (1543), Galileo riuscì a dare una formulazione della legge 
matematica della caduta dei gravi, fece alcune scoperte astronomiche, enunciò il “principio 
di relatività”, i principi di inerzia e di scomposizione delle forze, e fu un convinto asserto-
re dell’importanza e della validità del sistema copernicano, tant’è che molti dei suoi sforzi 
come scienziato furono rivolti a farne riconoscere la novità radicale nella concezione dell’u-
niverso. Il “principio di relatività galileiana” sarà sviluppato nei secoli successivi e diventerà 
uno dei principi fondamentali dell’intera fisica grazie soprattutto alle scoperte fatte da Ein-
stein con la sua teoria della relatività ristretta del 1905 e della teoria della relatività generale 
del 1915-16, quest’ultima basata sul principio di equivalenza tra massa inerziale e massa 
gravitazionale; in altre parole, il loro rapporto è costante e uguale per tutti i corpi. Dopo le 
osservazioni e scoperte importanti fatte da Galilei tra il 1609 (il corto trattato sull’astrono-
mia Sidereus Nuncius appare nel 1610 e Il Saggiatore viene pubblicato nel 1623) e il 1632 (anno 
della pubblicazione del Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano), 
riguardanti le leggi del moto dei corpi terrestri e celesti, un progresso decisivo fu ottenuto 
da Isaac Newton, che a partire dal 1666 riuscì ad unificare in una teoria coerente i diversi 
risultati di Keplero sulle cause dei moti planetari e di Cartesio sul peso dei corpi sulla Terra, 
dando alle leggi dinamiche dei suoi predecessori una sistemazione teorica decisamente 
più intelligibile. Risolto il problema dinamico del moto di un corpo grazie al modello ge-
ometrico introdotto da Keplero, Newton unificò concettualmente il principio cartesiano 
del moto rettilineo uniforme di una particella materiale in vacuo, la legge galileiana della 
composizione delle forze e le tre leggi di Keplero circa i moti planetari, pervenendo così alla 
formulazione matematica della legge della gravitazione universale (nella sua grande opera 
Philosophiæ naturalis principia mathematica, del 1680). Il concetto di simmetria ha avuto un 
ruolo capitale nel cammino tortuoso e travagliato della scienza che ha portato tra metà Ot-
tocento e inizi Novecento ad una conoscenza approfondita delle regolarità fondamentali 
del mondo fisico, di cui però già Keplero aveva avuto un’intuizione profonda. In particola-
re, si è via via capito il nesso fondamentale tra simmetrie geometriche, invarianze di certe 
grandezze e leggi fisiche. L’idea di simmetria, matematicamente espressa tramite il concet-
to di gruppo di trasformazioni (grazie ai lavori di Klein, Lie, Weyl e E. Cartan), che può essere 
continuo (infinito) o discreto (finito), ha aperto la strada a nuove scoperte fondamentali 
nella fisica del XX secolo, in particolare le due teorie della relatività, ristretta e generale, e 
la meccanica quantistica, e permesso la formulazione rigorosa dell’elettrodinamica quanti-
stica (teoria che unifica materia e radiazione) e delle teorie di gauge non abeliane basate su 
un gruppo di simmetrie locali le cui trasformazioni sono non-commutative. Questi gruppi 
di simmetrie possono essere definiti e agire dinamicamente su certi spazi topologici di cui 
le strutture fondamentali sono invariati per deformazione.

Abstract  Relying upon ideas and results obtained by different scientists during the 
previous centuries and notably on the astronomical revolution presented by Copernicus 
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in De revolutionibus orbium cœlestium (1543), Galileo Galilei succeeded in formulating the 
mathematical law of falling bodies, made some astronomical discoveries, and states 
the “principle of relativity”, the principle of inertia and the principle of decomposition of 
forces, and also he was a convinced advocate of the importance and validity of the Co-
pernican system, so much so that many of his much efforts as a scientist were directed 
at recognizing the radical change in the vision of the universe it produced. The “principle 
of galilean relativity” will be developed in the following centuries and will became one 
of the most fundamental principles of physics thanks especially to Einstein’s discovery of 
special relativity (1905) and general relativity (1915-16), the last based on the principle of 
equivalence between inertial mass and gravitational mass. After the important obser-
vations and discoveries made by Galilei between 1609 (the short astronomical treatise 
Sidereus Nuncius appeared in 1610 and Il Saggiatore was published in 1623) and 1632 (with 
the publication of the Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano) 
concerning the laws of the movement of terrestrial and celestial bodies, a major prog-
ress was obtained by Isaac Newton, which around the year 1666 succeeded in unifying in 
a coherent theory the different results by Kepler on the causes of planetary movements 
and by Descartes on the weight of the bodies on the Earth; and therefore he was able 
to give to the dynamical laws of his predecessors a more intelligible theoretical setting. 
With the resolution of the dynamical problem of the movement of a body thanks to the 
geometrical model introduced by Kepler, Newton conceptually unify the cartesian prin-
ciple of rectilinear uniform movement of a material particle in vacuo with the Galilean 
law of the composition of forces and the three laws of Kepler on the planetary move-
ments, obtaining thus the mathematical formulation of the law of universal gravitation. 
Furthermore, it has been stressed that the concept of symmetry played a key role in the 
tortuous path, which led, between the second half of the XIX century and the begin-
ning of the XX century, to a deep knowledge of fundamental regularities of the physical 
world, although already Kepler has had a profound intuition of this fact. In particular, 
one has gradually understood the fundamental link relating the geometrical symme-
tries to the invariance of certain quantities and the physical laws. The idea of symmetry, 
mathematically expressed through the concept of a group of transformations (due to 
the works of Klein, Lie, Weyl and E. Cartan), which can be either continuous (i.e. infinite) 
or discrete (i.e. finite) paved the way to new fundamental discoveries in the XX century 
physics, particularly to the two theories of Einstein’s relativity, special and general, and 
quantum mechanics, and allowed for the rigorous formulation of the quantum electro-
dynamics (a theory which unify matter and radiation) and of non-Abelian gauge theo-
ries, resting on groups of local symmetries whose transformations are non-commuta-
tive. These groups of symmetries can be well defined and they act dynamically upon 
certain topological spaces whose fundamental structures are invariant by deformation.


